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Abstract: Facial expression recognition (FER) is an essential technology at the intersection 

of artificial intelligence (AI), computer vision, and psychology. This study proposes a novel 

framework for FER, aiming to improve system robustness and generalization, especially 

under variable real-world conditions. Using the FER2013 dataset, this research combines an 

adaptive preprocessing pipeline with a custom Convolutional Neural Network (CNN) 

architecture. Key preprocessing steps include normalization, rotation, and flipping to improve 

data quality and diversity. The CNN architecture combines regularization methods, including 

dropout and L2 regularization. Dynamic hyperparameter tuning and early stopping optimize 

performance and prevent overfitting. Normalized confusion matrix indicating strong 

recognition for well-represented emotions, such as happiness with 86% accuracy, and 

challenges with underrepresented categories like disgust. This research aims to contribute to 

the ongoing development of facial expression recognition systems by enhancing their 

robustness and generalization. While further refinement is needed, this work provides a step 

toward more accurate and adaptable FER models, with the potential to support advancements 

in human-computer interaction and various real-world applications.  
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1. Introduction 

In today's digital epoch, the ability to understand and interpret human emotions has become 

increasingly crucial for technological advancement. Facial expression recognition (FER) is the 

intersection of artificial intelligence (AI), computer vision, and psychology. It is a critical tool in 

diverse applications ranging from human-computer interaction to mental health diagnosis [1, 2]. FER 

encourages the recognition of emotions in healthcare and driver safety applications while also finding 

use in personalized marketing and surveillance systems [3, 4]. By analyzing facial muscle movements, 

this technology promotes more intuitive and emotionally aware interactions, potentially bridging 

human-machine communication gaps [3]. 

Facial expressions represent a fundamental aspect of human communication, with certain basic 

expressions like happiness, anger, and sadness being universally recognized [2]. This universality 

was first documented in psychological studies by Ekman and Friesen. This universality provides the 

theoretical foundation for automated FER systems [5]. However, while these expressions are 
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biologically rooted, cultural and individual differences present variability that complicates their 

analysis [2, 5]. Additionally, real-world applications face challenges such as occlusions, lighting 

variations, and pose changes, all of which impact system performance [4][6]. These issues prevent 

the creation of systems that can generalize effective results beyond controlled environments. 

Previous research has explored both traditional machine learning methods and deep learning 

approaches to address these challenges. Early FER systems relied on handcrafted feature extraction 

techniques such as Local Binary Patterns (LBP), Optical Flow, and Gabor filters [5, 6]. While 

effective in static and controlled settings, these methods often needed help with the variability 

inherent in dynamic, real-world environments [4]. With the advent of deep learning, Convolutional 

Neural Networks (CNN) have become a cornerstone for FER development. By automatically learning 

hierarchical features directly from raw image data, CNN-based models have demonstrated 

remarkable improvements in accuracy and robustness [1, 3]. These methods have been successfully 

applied to large-scale datasets like FER2013, comprising over 35,000 grayscale images across seven 

emotional categories [4]. 

While deep learning approaches have advanced the field considerably, several fundamental 

challenges persist in FER development. Overfitting due to limited labeled data, data imbalance, and 

variability in human expressions remain significant barriers to achieving robust system performance 

[1, 5, 6]. To address these limitations, researchers have employed strategies such as data augmentation, 

dropout layers, and normalization, which have shown promise in mitigating these issues [3, 4]. 

Normalization plays a crucial role by ensuring feature comparability across samples, improving 

numerical stability during training, and facilitating faster model convergence [7]. Nevertheless, there 

remains a pressing need for innovative methodologies to enhance the generalizability and 

applicability of FER systems in diverse real-world scenarios. 

This study offers FER by developing a novel deep learning framework that explores three critical 

challenges: overfitting in large-scale datasets, class imbalance among emotion categories, and 

performance degradation under variable real-world conditions. 

The approach introduces several critical enhancements to advanced FER systems: 

(1) an adaptive preprocessing pipeline that enhances data quality and feature diversity through 

techniques like normalization, rotation, and flipping. 

(2) an optimized CNN architecture with advanced regularization methods such as dropout and L2 

regularization. 

(3) an efficient training strategy featuring dynamic hyperparameter tuning and early stopping. 

These strategies aspire to enhance classification accuracy and computational efficiency. 

2. DataSets 

2.1. Data collection and description 

The dataset used in this study is the FER2013 dataset, a widely recognized benchmark for FER tasks. 

Figure 1 shows 32,298 grayscale images of human faces, each resized to 48x48 pixels, distributed 

across seven emotional categories: anger, disgust, fear, happiness, sadness, surprise, and neutral. The 

dataset is divided into training (28,709 images) and test (3,589 images) subsets.  
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Figure 1: Sample Images from the FER2013 Dataset. 

FER2013 provides the scale and diversity needed for training deep learning models in FER. Its 

pose, lighting, and demographic feature variability offer a challenging standard for developing robust 

and generalizable FER systems. Additionally, its comprehensive representation of emotional states 

aligns with the goal of addressing real-world variability and enhancing model performance across 

diverse scenarios. However, as shown in Figure 2, the dataset exhibits notable class imbalance, with 

happiness accounting for approximately 25% of the training samples and disgust comprising only 

about 1.5%, offering a significant challenge for model training. 

 

Figure 2: Emotion class distribution in the FER2013 dataset for train and validation sets. 

2.2. Data Pre-processing 

Effective data preprocessing is essential for ensuring the quality and consistency of inputs in FER 

tasks, where noise and variability can significantly impact model performance. All images were 

converted to grayscale and resized to a uniform dimension of 48x48 pixels, reducing computational 

complexity while preserving essential features for emotion recognition. Pixel intensity normalization 

followed, rescaling all pixel values to the range [0,1]. The raw pixel intensities are scaled consistently 

across the dataset through this normalization process, reducing the influence of varying brightness 

levels or contrast in the images. Furthermore, data augmentation was applied to address the class 

imbalance and increase training data diversity, using random rotations, horizontal flipping, width and 
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height shifts, and zooming techniques. These transformations simulate real-world variations, such as 

changes in orientation and perspective, improving the model's ability to generalize to unseen data. 

2.3. Model selection 

Among various machine learning approaches, CNN has emerged as a leading solution for the FER 

problem due to its ability to automatically learn hierarchical features directly from raw image data, 

eliminating manual feature extraction, and showcasing remarkable robustness and adaptability across 

diverse datasets and conditions [8]. This study employs a customized CNN architecture tailored to 

address FER challenges, incorporating techniques to enhance performance and generalizability. The 

overall structure of the proposed architecture is illustrated in Figure 3. 

 

Figure 3: Proposed CNN architecture for facial expression recognition. 

The architecture begins with an input layer designed for grayscale images with dimensions of 

48x48 pixels. This size is computationally efficient while retaining critical details necessary for 

emotion classification. Following the input layer, the model employs a series of convolutional layers, 

each coupled with batch normalization, ReLU activation, and max-pooling. Batch normalization, 

combined with dropout layers strategically placed throughout the network, helps to reduce overfitting 

and ensures robust generalization to unseen data [9]. This sequential structure allows the network to 

progressively extract increasingly complex features, from simple edges and textures to more abstract 

patterns representing facial expressions. The convolutional layers are configured with increasing 

filters 32, 64, and 128 across successive layers. Each layer uses a kernel size of 3x3, a standard choice 

for balancing feature granularity and computational efficiency. Batch normalization is applied after 

each convolution to stabilize learning by normalizing the activations, while ReLU activation 

introduces non-linearity, enabling the model to capture intricate features. Max-pooling layers reduce 

spatial dimensions, minimizing computational requirements while maintaining essential features. In 

the final convolutional layer, a dropout layer with a rate of 0.5 is applied, further reducing overfitting 

by randomly deactivating neurons during training. Following the feature extraction phase, the 

architecture incorporates two fully connected (FC) layers with 256*7 and 512 neurons, respectively. 

Both layers are equipped with dropout layers with a rate of 0.5, randomly deactivating a fraction of 

neurons during training. L2 regularization penalizes large weights, enhancing the model's robustness. 

The first FC layer transforms the flattened feature map from the final convolutional layer into a dense 

representation with 256*7 dimensions, capturing relationships across all extracted features. The 

second FC layer further processes these features, refining the abstraction and enabling effective 

classification before the output layer. The final layer in the network is a dense layer with seven 

neurons, corresponding to the seven emotional categories in the FER2013 dataset. A softmax 
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activation function normalizes the outputs, creating a probability distribution over the emotion classes, 

which allows the model to make accurate predictions. 

The proposed CNN training protocol focused on optimizing performance and generalizability. The 

Adam optimizer was employed with an initial learning rate of 0.001. A batch size of 128 was used to 

balance memory efficiency and training speed. Early stopping was implemented to monitor validation 

accuracy, halting training when no improvement was observed for ten epochs. Model checkpointing 

saved the best-performing weights during training, confirming the retention of optimal parameters. 

The training was conducted for a maximum of 100 epochs, with all epochs evaluated against the 

validation set to track generalization performance. 

3. Results and Discussion 

3.1. Experimental Setup 

The experimental setup employed in this study was devised to evaluate the proposed CNN 

performance for FER rigorously. This process included carefully selecting optimizers, 

hyperparameters, and evaluation strategies, which were underpinned by findings from comparative 

studies on optimization algorithms. Optimization algorithms are vital for achieving efficient and 

precise model training. In this study, the Adam optimizer was selected for its proven effectiveness in 

addressing challenges such as sparse gradients and non-stationary objectives. A comparative study 

on optimization techniques demonstrated that Adam consistently outperforms other algorithms, 

including Stochastic Gradient Descent (SGD) and Root Mean Square Propagation (RMSProp), in 

terms of training speed and accuracy across various computer vision tasks [10]. Grid search 

experiments were conducted to identify the optimal hyperparameters for training by varying the 

learning rate, batch size, and dropout rate. Learning rates were tested at [0.001, 0.0005, 0.0001] to 

find a balance between stable convergence and efficient learning. Batch sizes of [32, 64, 128, 256] 

were evaluated to identify a configuration that maximized performance while remaining 

computationally feasible. Similarly, dropout rates of 0.5 and 0.25 were explored to determine the 

most effective approach for mitigating overfitting without impairing the network's learning capacity. 

The combination of a 0.0001 learning rate, a batch size of 128, and a dropout rate of 0.5 appeared as 

the optimal configuration through these experiments.  Early stopping was applied, halting training 

after ten consecutive epochs with no improvement in validation accuracy. This strategy addresses 

overfitting by regulating the number of epochs based on performance trends and ensuring 

computational efficiency [11]. Early stopping is superior in maintaining convergence with minimal 

error rates, making it an indispensable component of regularization strategies in deep learning. 

Additionally, model checkpointing saved the best-performing model weights based on validation 

accuracy. The model was implemented using TensorFlow and trained on a GPU-equipped system to 

accelerate computations. Metrics, including training loss, validation loss, and accuracy, were 

recorded after each epoch to evaluate model performance and ensure convergence. The experimental 

protocol also included visualizations of loss and accuracy trends, providing senses into training and 

allowing for informed adjustments to hyperparameters when necessary. 

3.2. Performance Metrics 

In deep learning, performance metrics are essential for evaluating model efficiency, convergence, and 

generalization. These metrics provide a quantitative foundation for assessing a model's suitability for 

a given task. For FER, the primary metrics include training loss, validation loss, training accuracy, 

and validation accuracy. The proposed CNN architecture achieved exemplary performance in these 

metrics using a configuration of a learning rate of 0.0001, a batch size of 128, and a dropout rate of 

0.5. Training loss rapidly declined during the initial epochs and plateaued at a low value, indicating 
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effective learning. Validation loss mirrored this behavior, stabilizing without significant oscillations, 

which is critical for demonstrating convergence and robustness. By the 25th epoch, the validation 

loss had leveled off. The accuracy metrics underline the strength of this configuration. Training 

accuracy rapidly increased to exceed 55% within the first ten epochs and continued to improve, 

reaching 65% by the 40th epoch. Validation accuracy, a vital indicator of the model's real-world 

applicability, followed a parallel trend, stabilizing at approximately 62%. This consistent alignment 

between training and validation metrics reflects the model's ability to generalize effectively. The 

selected configuration provided a well-balanced approach, achieving robust convergence and 

generalization, highlighting its suitability for FER tasks. Figure 4 shows the training and validation 

loss and accuracy trends for the model. 

 

Figure 4: Training and validation loss and accuracy trends for the proposed CNN architecture. 

Figure 5 shows that the normalized confusion matrix provides detailed insights into the model's 

classification performance across the seven emotional categories. This matrix highlights the strengths 

and areas for improvement in the model's ability to generalize across diverse facial expressions and 

serves as a comprehensive tool for evaluating classification metrics. Confusion matrices are 

significant in visualizing the performance of classifiers by offering a clear breakdown of correct. The 

matrix reveals that the model performed exceptionally well in recognizing the emotion of happiness, 

achieving a classification accuracy of 86% for this category. This result aligns with the observation 

that the FER2013 dataset contains a relatively balanced representation of the "happy" class, making 

it easier for the model to generalize. Similarly, the model exhibited a strong performance for surprise, 

with an accuracy of 66%, and neutral, with an accuracy of 69%, demonstrating its ability to handle 

classes with less ambiguity and moderate representation. However, the matrix also highlights 

challenges in recognizing certain emotions. For example, disgust was the most difficult category to 

classify, with an accuracy of only 18%. A significant proportion of "disgust" samples were 

misclassified as angry (48%), reflecting the similarity in facial features associated with these 

emotions, as well as the dataset's severe imbalance for the "disgust" class. Similarly, fear and sadness 

achieved lower accuracies of 26% and 55%, with frequent misclassifications into adjacent categories 

such as angry and neutral. These results suggest that while the model effectively distinguishes well-

represented and visually distinct emotions, it needs help with underrepresented and visually 

overlapping categories. 
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Figure 5: Normalized confusion matrix for the proposed CNN model’s classification performance. 

3.3. Analysis of Results 

This section provides a detailed analysis of the impact of hyperparameter choices on the performance 

of the CNN model for facial expression recognition. By systematically varying the learning rate, batch 

size, and dropout rate, the study identifies the trade-offs and advantages of each configuration, 

supported by quantitative comparisons. The analysis is structured into three subsections: the impact 

of learning rate, batch size effects, and dropout rate analysis. 

3.3.1. Learning Rate Impact 

The configuration with a learning rate of 0.001 demonstrated a rapid decrease in training and 

validation loss during the initial epochs, indicative of accelerated convergence. However, as training 

progressed, significant oscillations in both metrics were observed. These fluctuations suggest that the 

higher learning rate caused the optimizer to overshoot local minima, leading to unstable updates and 

suboptimal performance in later epochs. In contrast, the slower learning rate of 0.0001 facilitated a 

smoother and more consistent convergence, avoiding erratic updates and ensuring superior 

performance stability. 

3.3.2. Batch Size Effects 

Similarly, the choice of batch size had a notable impact on the efficiency and accuracy of the model. 

Larger batch sizes, such as 256, demonstrated more stable learning but at the cost of reduced accuracy 

due to insufficient gradient variability. The batch size 128 provided a practical middle ground, 

balancing computational efficiency with accurate gradient estimation, promoting the model to 

achieve high validation accuracy while maintaining smooth training curves. 

3.3.3. Dropout Analysis 

The dropout rate also played a pivotal role in determining the model's generalization capabilities. 

Configurations with lower dropout rates, such as 0.3, showed reduced regularization effects, leading 

to overfitting. Higher dropout rates excessively hindered learning by deactivating too many neurons, 

resulting in underfitting and lower accuracy metrics. The dropout rate of 0.5 struck an ideal balance, 

mitigating overfitting while retaining the model's capacity to learn complex features. Beyond these 
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individual hyperparameters, their combined effect shapes the model's overall performance. For 

example, while a learning rate of 0.0005 showed promise with smoother training curves, its 

combination with lower dropout rates of 0.25 yielded suboptimal validation accuracy, peaking at 58%. 

Highlights the importance of carefully balancing hyperparameters to achieve robust generalization 

and high performance. This study systematically analyzes performance across different settings, 

highlighting the critical role of hyperparameter tuning in deep learning models. It establishes the 

optimal configuration as a benchmark for advancing FER systems. These findings emphasize the 

need for balanced, data-driven parameter selection in developing scalable and effective AI solutions. 

4. Conclusion  

This study proposed an alternative approach to improving critical FER challenges, including 

overfitting, class imbalance, and variability in real-world conditions. The model achieved significant 

progress in robustness and generalization by introducing a novel framework incorporating advanced 

preprocessing techniques, a custom CNN architecture, and dynamic hyperparameter optimization. 

The optimal configuration demonstrated strong performance, achieving a validation accuracy of 62% 

with consistent alignment between training and validation metrics. The normalized confusion matrix 

further highlighted the model’s strengths in accurately identifying well-represented emotions, such 

as happiness and surprise, while identifying areas of improvement for underrepresented or 

overlapping categories like disgust and fear.  

This study provides an alternative pathway for advancing FER systems by combining architectural 

optimization with strategic preprocessing and regularization methods. This approach offers a flexible 

and scalable solution for improving FER performance in real-world applications, particularly in 

healthcare, human-computer interaction, and education, where accurate emotion recognition is 

critical. The methodology outlined here underscores the potential for systematic tuning and 

integration of advanced techniques to enhance the overall reliability and effectiveness of FER systems. 

Nevertheless, limitations remain. The class imbalance inherent in the FER2013 dataset and the 

model's difficulty distinguishing visually similar expressions highlight areas for further exploration. 

Future work could mitigate these challenges by incorporating advanced data augmentation, attention 

mechanisms, or ensemble learning strategies. By building upon this study's insights, future research 

can refine and extend this alternative approach to create more inclusive, adaptive, and accurate FER 

solutions. 
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