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Abstract. There is a lot of uncertainty in many things that happen in real life, which leads to 

many events occurring randomly, and the quantitative description of the relationship between 

this sequence of random events is the stochastic process. Stochastic process is an important part 

of Probability. The stochastic process is a set of random variables, which is {Xt} t belongs to the 

T, The variable t is the parameter known as time, The parameter in a stochastic process are 

uncertain, each t corresponding to a random variable. T is the parameter set, and is a discrete 

parameter process when T is a finite set or a countable set, otherwise it is a continuous parameter 

process. The stochastic process can be divided into discrete state and continuous state according 

to the state space. If the random process x(t) takes countable values, then it is a discrete state 

process, otherwise it is not countable which is a continuous state process. The values of random 

variables change according to the results of random trials, and the pattern of change is also known 

as probability distribution. Stochastic process, which belonged to the field of physics in the early 

days of research, have developed into a powerful tool for research in many fields such as natural 

sciences, engineering sciences, and social sciences. Stochastic process use formulas to derive the 

probability of future events, find the inner laws from the apparent chance of events and describe 

the laws through probability. It can also be used as a statistical model to predict and deal with 

the development of some complex things in nature. 

Keywords: random walk, stochastic process. 

1.  Basic Knowledge of Random Walk 

Random walk is a kind of stochastic process, and the random walk algorithm can be applied in many 

fields of life, such as simulate stock prices, describe the statistical properties of genetic drift, simulate 

the cascade of neuronal firing in the brain, simulate the movement of gas molecules during diffusion, 

simulate the search path of foraging animals, etc. In many complex real-world situations, it is very 

difficult to draw direct conclusions about the occurrence of random events [1-18]. Probabilistic 

programming is a technique for developing system that assist humans in making decisions in the face of 

uncertainty. Many daily choices involve using judgment to identify pertinent, non-observable aspects. 

Probabilistic programming identifies those unseen aspects that are crucial to a decision by fusing our 

understanding of a situation with the rules of probability. Probabilistic reasoning system is becoming 

simpler to design and more often utilized thanks to a unique technique called probabilistic programming. 

For random events, historical data from past occurrences cannot be used to predict the exact probability 

of future occurrences. By modeling the random walk of events through a programming language, the 

process of event occurrence can be fully simulated to approximate the most realistic outcome. At the 

same time, it is possible to determine the direction of things in the simulation process and get the 
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corresponding probability of the development of things to help in decision making. In essence, the 

implementation of random walk algorithm through programming language can simulate the 

development of random events and achieve better decision making by finding the development pattern 

of simulated events. Therefore, in order to facilitate the simulation and observation of the random walk 

event to determine its trend, it is necessary to research how to implement random walk algorithm and 

modeling in the programming language. Random walk is often used as a simplified model for Brownian 

motion. Brownian motion is a classical example of a continuous stochastic process, it is the motion of 

flowing molecules colliding with particles at random. These liquid molecules keep doing irregular 

motion, in this irregular motion process, they will be randomly collision particles, these particles will 

randomly move to different directions due to the impact of molecules from different directions and force 

imbalance. In this whole movement process, x(t) is composed of the total number of particles, each one 

of them represents a particular particle sample. Also, this is a canonical process. However, random walk 

is a classical discrete stochastic process. The concept of random walk is very close to Brownian motion. 

A simple one-dimensional random walk can be thought of as a random step to the left or right on the 

number axis with the same probability moving forward to each direction after one unit of time. Each 

step of the move is an independent random variable, and the set consisting of these independent random 

variables is the simple random walk. The probability of each move in both directions is equal, so as the 

step of moves increases, the average of all moves converges to 0, so the expected value is 0. The 

expected distance after moving n steps is n^(1/2). In a random walk, the position of each move depends 

only on the position of the previous step and is not affected by the direction of the move of the other 

previous steps. Thus, a one-dimensional random walk can also be referred to as a Markov chain. When 

there exists a random variable Xt (t = 0, 1, 2，···), if Xt depends only on Xt-1 and not on {X0, X1, ···, 

Xt-2} is called Markov property, and a random sequence with Markov property is called a Markov 

chain, which is also a description of the state sequence. The Markov chain's transfer probability 

distribution determines its characteristics. In discrete time and states, a discrete Markov chain such as a 

dice throw, where the result of each throw is uncorrelated with the previous result and the sum of any 

previous results, at the same time, the probability of each result occurring is the same. Higher 

dimensional random walk’s set have geometric properties and can be thought of as discrete fractals. 

Fractals have self - similarity. Classical fractals such as Koch snowflake, Peano Curve, Sierpinski 

triangle, Sierpinski carpet, etc. The two-dimensional random walk can be thought of as a random 

movement towards four different directions which are up, down, left and right on the coordinate axis, 

and will definitely return to the origin after some random steps. However, for higher dimensions, the 

probability of returning to the origin will gradually decrease. The step length of the random walk is 

constant for each step. The three-dimensional random walk can be thought of as a random movement in 

six directions: up, down, left, right, front and back. Other random walks such as self-avoiding random 

walks, which can be used to model chain-like entities such as solvents and polymers. In a self-avoiding 

random walk, each access point in a path can only be visited once and cannot be repeated so the paths 

will not cross. A Gaussian random walk whose step size varies according to a normal distribution can 

be thought of as the sum of a series of independent and identically distributed random variables and has 

a wide range of applications, such as the Black-Scholes formula used as a basic assumption to model 

option prices. Other random walks such as Branching random walk, Loop-erased random walk, 

Maximal Entropy Random Walk, etc. are also applied in various fields. 

2.  Introduction to Programming Languages That Can Implement The Random Walk 

Algorithm 

When applying random walks to real life using a programming language, it is important to first focus 

on the uncertainty factor involved in real life problems. Since it is impossible to predict whether things 

will happen with 100% probability, probability data can be considered as a key factor when making 

decisions using random walk model in the present. When faced with different decisions, the probability 

data obtained after different simulations can be used as a reference at the same time. Using the 

probabilities obtained after modeling random walk to simulate real problems to analyze and make 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230814

293



decisions about things that have not yet happened in the future can lead to clearer answers to decision 

problems. These decisions are made through a combination of knowledge of the current situation and 

logic. In other words, when making difficult decisions, it is also important to understand the problem in 

depth and then get reliable decisions through approximate data obtained by logical analysis. In analyzing 

the actual problem, not only the probability data of the random walk is used as one of the factors 

influencing the decision, but also observe the whole simulation process of the random walk and then the 

data can be applied to the problem. Knowledge about the problem and all the relevant factors affecting 

the outcome of the problem are put into the model, and the final judgment will still be generated in 

probabilistic form after the model shows the entire process of the random walk. In this process of 

modeling through the random walk algorithm, the entire knowledge about the problem and the 

conditions affecting the outcome will be replaced in quantitative form and the model will be applied to 

the actual factors to find the answer to the decision by continuously observing the random walk process 

and probabilistic data. Its essence is calculated by mathematical rules. In current computer applications, 

the mathematical operations in this process can be easily implemented in several common programming 

languages. Programming languages like MATLAB, Python, SAS, Lingo, Java, C, C++, etc. can be used 

for modeling random walks[1-18]. The implementation of random walk algorithms using programming 

languages is essentially a simulation, a delineation of the actual problem using mathematical symbols, 

graphs, etc. Therefore, it is necessary to use a programming language that facilitates the application of 

various mathematical notations to perform mathematics and present mathematical logic more 

efficiently. Matlab is not a free software with powerful built-in functions and various toolkits to 

efficiently build complex models, and it comes with a complete set of toolkits with algorithms written 

by experts that can be used directly. Python as a free open source language, contains a lot of open source 

code that can be used, and its simple syntax makes it easy to build models, with a large number of related 

libraries available for model building (e.g., NumPy, SciPy, scikit-learn, SageMath, etc.). There is also a 

rich ecosystem of real-life relevant data and problems that can be updated more quickly, which facilitates 

solving real-world problems with random walk algorithms. Other languages such as SAS are used for 

professional statistical analysis, but again the full functionality is not available for free. LINGO is also 

very good for modeling and is mainly used for solving planning type optimization problems. Java, C, 

C++ are also powerful open source mainstream programming languages for modeling random walk 

algorithms, but the syntax is more complex than Python. Therefore, using Python as the programming 

language for modeling the random walk algorithm is the more common choice. 

3.  Steps of Implement The Random Walk Algorithm Using a Programming Language 

Programming is a process from finding a problem to finding a solution, then express the solution to the 

problem on computer, and finally the computer outputs the answer to the user. The algorithm is the core 

of this process. Good algorithms allow computers to consume less time and space, a good algorithm 

determined by its time and space complexity. Implementing a simple random walk algorithm requires 

an initial starting point, typically the origin, and then moving from one or a series of starting points until 

the entire graph is traversed. At any starting point, the probability of a random move in a different 

direction is fixed and the same each time, and a probability distribution is derived after each wander that 

reflects the probability of each vertex in the graph being visited. This probability distribution is used as 

input for the next wander and iterated over. When this process satisfies certain preconditions, this 

probability distribution will converge. After convergence, a smooth probability distribution can be 

obtained for observation. It is important to set some variables during the iterative process. The first thing 

is to set the iteration start point and the step size of each walk according to different dimensions. Then 

the number of iterations is determined, followed by randomly generating the vector under the specific 

dimension, and then continuing the execution until the end after showing the position where the current 

point is located. The Python code for a simple random walk 3D model is as follows: 

import random 

 

t = int(input("Input maximum time : ")) 
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def RandomWalk3D(): 

    global x,y,z 

    x = 0 

    y = 0 

    z = 0 

    OriginPoint = [x,y,z] 

    print("Origin point is :", OriginPoint) 

    direction = ["left","right","up","down","forward","back"] 

    for i in range(0,t): 

        step = random.choice(direction) 

        if step == "left": 

            x -= 1 

            print([x,y,z]) 

        elif step == "right": 

            x += 1 

            print([x,y,z]) 

        elif step == "up": 

            y += 1 

            print([x,y,z]) 

        elif step == "down": 

            y -= 1 

            print([x,y,z]) 

        elif step == "forward": 

            z += 1 

            print([x,y,z]) 

        elif step == "back": 

            z -= 1 

            print([x,y,z]) 

         

 

loop = int(input("How many independent trajectories you wanna: ")) 

j = 0 

xSum = 0 

ySum = 0 

zSum = 0 

 

while j < loop: 

    RandomWalk3D() 

    xSum += x 

    ySum += y 

    zSum += z 

    j += 1 

print("The average of the distance is:", [xSum/j,ySum/j,zSum/j]) 

 

The basic random walk simulates a simple random walk process, and random walks with different 

characteristics can be implemented by gradually adding the corresponding code to the basic random 

walk model. For example, the self-avoiding random walk model can be implemented on the basic simple 

random walk model. The code to implement a 3D self-avoiding random walk model in Python is as 

follows. 

 

import random 
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t = int(input("Input maximum time : ")) 

direction = ["left","right","up","down","forward","back"] 

 

def Direction(a,b,c):     

    step = random.choice(direction) 

    if step == "left": 

        a -= 1 

    elif step == "right": 

        a += 1 

    elif step == "up": 

        b += 1 

    elif step == "down": 

        b -= 1 

    elif step == "forward": 

        c += 1 

    elif step == "back": 

        c -= 1 

 

def RandomWalk3D(): 

    global x,y,z 

    x = 0 

    y = 0 

    z = 0 

    OriginPoint = [x,y,z] 

    HistoryPosition = [[x,y,z]] 

    print("Origin point is :", OriginPoint) 

    for i in range(0,t): 

        step = random.choice(direction) 

        if step == "left": 

            x -= 1 

            while [x,y,z] in HistoryPosition: 

                x += 1 

                Direction(x,y,z) 

            print([x,y,z]) 

        elif step == "right": 

            x += 1 

            while [x,y,z] in HistoryPosition: 

                x -= 1 

                Direction(x,y,z) 

            print([x,y,z]) 

        elif step == "up": 

            y += 1 

            while [x,y,z] in HistoryPosition: 

                y -= 1 

                Direction(x,y,z) 

            print([x,y,z]) 

        elif step == "down": 

            y -= 1 

            while [x,y,z] in HistoryPosition: 

                y += 1 
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                Direction(x,y,z) 

            print([x,y,z]) 

        elif step == "forward": 

            z += 1 

            while [x,y,z] in HistoryPosition: 

                z -= 1 

                Direction(x,y,z) 

            print([x,y,z]) 

        elif step == "back": 

            z -= 1 

            while [x,y,z] in HistoryPosition: 

                z += 1 

                Direction(x,y,z) 

            print([x,y,z]) 

        HistoryPosition.append([x,y,z]) 

    print("HistoryPosition ",HistoryPosition) 

 

 

loop = int(input("How many independent trajectories you wanna: ")) 

j = 0 

xSum = 0 

ySum = 0 

zSum = 0 

 

while j < loop: 

    RandomWalk3D() 

    xSum += x 

    ySum += y 

    zSum += z 

    j += 1 

print("The average of the distance is:", [xSum/j,ySum/j,zSum/j]) 

 

The random walk algorithm enables the use of a programming language to build many different 

random walk models. When there is a demand for a particular probability data, the data generated by 

the random walk can be obtained by adding different instructions to the code of the model which can be 

effectively applied in various fields.  

4.  Summary 

Probabilistic programming is a technique for developing system that assist humans in making decisions 

in the face of uncertainty. Many daily choices involve using judgment to identify pertinent, non-

observable aspects. Probabilistic programming identifies those unseen aspects that are crucial to a 

decision by fusing our understanding of a situation with the rules of probability. Probabilistic reasoning 

system is becoming simpler to design and more often utilized thanks to a unique technique called 

probabilistic programming. Modeling of random walks can be applied in real life and used to solve many 

problems. The simulation process results in intuitive data close to the real outcome, and the data obtained 

through analysis can be used to confirm and solve problems. There are different kinds of random walks, 

but they can all be modeled by programming languages to achieve the algorithm, and different 

programming languages have different advantages and disadvantages, which do not have much impact 

on the implementation of simple algorithms, but complex models prefer to use more professional 

modeling software. What still needs to be addressed is how to use the random walk algorithm in greater 

depth to simulate possible future scenarios more accurately and to obtain more accurate probabilities. 
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