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Abstract: In this paper, a command-filter based neural network adaptive control method is 

proposed for high-order nonlinear systems with strict feedback. The command filter is used 

to avoid the computational complexity explosion problem of the traditional backstepping 

method, and the filtering error compensation mechanism is designed to reduce the impact of 

filtering error on the performance of the closed-loop system. In addition, the radial basis 

function neural network is used to deal with the uncertainty of the system, so as to improve 

the robustness and tracking performance of the controller. By constructing Lyapunov function, 

the asymptotic stability of the closed-loop system is proved theoretically. Simulation results 

show that the designed controller can achieve accurate and fast tracking of the reference 

signal and significantly improve the system performance. 

Keywords: high-order strict feedback, command filtering, filtering error compensation, 

neural network adaptation 

1. Introduction 

High-order strict feedback systems [1] are a class of nonlinear systems with a wide range of 

applications, widely existing in industrial control and engineering systems. However, due to the 

system complexity and uncertainty [2], it is challenging to design efficient control algorithms. 

Although the traditional backstepping method [3] can effectively solve some problems, its inherent 

computational complexity explosion problem limits its practical application. To this end, researchers 

have proposed a variety of improved schemes to improve the performance and computational 

efficiency of the controller. 

Command filtering [4] has been widely used in the control of nonlinear systems in recent years as 

a tool to simplify controller design. By filtering the complex virtual control signal, it avoids the 

calculation problem of high-order derivatives in backstepping method. However, the command filter 

introduces additional filtering errors [5], which may have a negative impact on the control 

performance of the system. Therefore, how to design an effective filtering error compensation 

mechanism has become an important research direction. 

Radial basis function neural network [6] (RBFNN) shows significant advantages in dealing with 

the uncertainty of nonlinear systems because of its powerful function approximation ability. By 

modeling and approximating unknown nonlinear functions [7], the problems caused by modeling 

errors and uncertainties in control system design can be effectively solved. However, the control 

method of combining neural networks with command filters needs to be further studied and improved. 
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Based on the above research background, this paper proposes an adaptive control method that 

fuses command filter, filtering error compensation mechanism and radial basis function neural 

network. Specifically, the main contributions of this dissertation include: 1. The command filter is 

used to simplify the generation process of virtual control signals and solve the problem of 

computational complexity explosion; 2. The filtering error compensation mechanism is designed to 

reduce the impact of the error on the closed-loop system performance. 3. The system uncertainty is 

approximated and compensated based on radial basis function neural network to improve the control 

accuracy and robustness of the system. 

The structure of this paper is as follows: The second part describes the research problem of high-

order strict feedback nonlinear systems, and introduces the related basic theory. The third part 

introduces the design process of the controller in detail. In the fourth part, the controller performance 

is verified by simulation analysis. Section 5 concludes this work and looks forward to future research 

directions. 

2. Problem description and introduction 

Consider the following high-order strict feedback nonlinear system: 

 {

�̇�𝑖 = 𝑔𝑖(�̄�𝑖)𝑥𝑖+1 + 𝑓𝑖(�̄�𝑖),

�̇�𝑛 = 𝑔𝑛(�̄�𝑛)𝑢 + 𝑓𝑛(�̄�𝑛),
𝑦 = 𝑥1,

 (1) 

where 𝑖 = 1,⋯ ,𝑁,�̄�𝑖 = [𝑥1, ⋯ , 𝑥𝑖] are system states, 𝑔𝑖(�̄�𝑖) are system gain functions, 𝑓𝑖(�̄�𝑖) are the 

unknown functions, represent the model uncertainties, 𝑢𝑖 and 𝑦𝑖 represent the output signals of the 

controller and the controlled system (1), respectively. 

Lemma 1 [7]: The structure of a radial basis function neural network used as a function 

approximator is 𝜃𝑇𝜉(𝑥) , where 𝜉(𝑥) = [𝜉1(𝑥), 𝜉(𝑥)2,⋯ , 𝜉𝑛(𝑥)]  is a vector with adjustable 

parameters. Usually 𝜉𝑖(𝑥)  are chosen as the Gaussian function 𝜉𝑖(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝜇𝑖)

𝑇(𝑥−𝜇𝑖)

𝜍𝑖
2 ] , 𝑖 =

1,⋯ , 𝑛, and denote the center vector 𝜇𝑖 and kernel width 𝜍𝑖 of the Gaussian function. The unknown 

nonlinear function can be expressed as 

 𝑓(𝑥) = 𝜃*𝑇𝜉(𝑥) + 𝛿* (2) 

where 𝜃* is the unknown optimal weight vector, 𝛿* is the minimum approximation error, satisfies 

|𝛿*| ≤ 𝛿, 𝛿 is an arbitrarily small positive constant. In addition, the constant 𝜃 is defined as the norm 

of the weight vector Θ. 

Lemma 2 [8]: Introduce the command filter as 

 {
�̇�1 = 𝛽𝑧2

�̇�2 = −2𝛾𝛽𝑧2 − 𝛽(𝑧1 − 𝛼),
 (3) 

where 𝑧1 and 𝑧2 are the output signals of the command filter, 𝛼 are the input signals of the command 

filter, 𝛾  and 𝛽  represent the design parameters. By adjusting the parameters, the filtering error 

satisfies |𝑧1 − 𝛼| ≤ 𝜒, 𝜒 is an arbitrarily small positive constant. In order to eliminate the negative 

impact of the filtering error caused by the command filter on the tracking error, the following filtering 

error compensation mechanism is designed. 
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{
 
 

 
 �̇�1 = 𝑎𝜑2 + 𝑏 (𝑧1,1 − 𝛼1) − 𝑐𝜑1,

�̇�𝑖 = 𝑎𝜑𝑖+1 + 𝑏 (𝑧𝑖,1 − 𝛼𝑖) − 𝑎𝜑𝑖−1 − 𝑐𝜑𝑖 ,

�̇�𝑛 = −𝑐𝜑𝑛 − 𝑎𝜑𝑛−1,

 (4) 

where 𝜑𝑖 are the filtering error compensation signals, 𝑎, 𝑏 and 𝑐 are the design parameters. 

To discuss the convergence of the error compensation system, the Lyapunov function is designed 

to be 𝑉𝑐 = ∑
𝜑𝑖
2

2

𝑛
𝑖=1 , and its derivative in the time domain is 

 �̇�𝑐 = −𝑐∑ 𝜑𝑖
2𝑛

𝑖=1
+ 𝑏∑ 𝜑𝑖 (𝑧𝑖,1 − 𝛼𝑖)

𝑛−1

𝑖=1
 (5) 

It follows from Young's inequality that 

 𝜑𝑖 (𝑧𝑖,1 − 𝛼𝑖) ≤
𝜑𝑖
2

2
+
𝜒2

2
 (6) 

Equation (5) can be rewritten as 

 �̇�𝑐 ≤ −�̄�𝑉𝑐 + �̄� (7) 

where �̄� = 2𝑐, �̄� is a positive constant and satisfies �̄� ≥ 𝑏(𝑛 − 1)
(𝜑𝑖

2+𝜒2)

2
. By integrating both sides 

of the above equation, one obtains 

 0 ≤ 𝑉𝑐(𝑡) ≤
�̄�

𝑐̄
+ (𝑉𝑐(0) −

�̄�

𝑐̄
) 𝑒−𝑐̄𝑡 (8) 

Obviously 𝑙𝑖𝑚
𝑡→∞

𝑉𝑐(𝑡) =
�̄�

𝑐̄
, it means that 𝑙𝑖𝑚

𝑡→∞
|𝜑𝑖(𝑡)| = √

2�̄�

𝑐̄
; Moreover, the size of the compensation 

signal can be adjusted by adjusting the constant �̄� . In summary, the compensation signal 𝜑𝑖  is 

asymptotically convergent. 

3. Controller design 

The reference signal 𝑦𝑟 (step 1) and the virtual control signal 𝛼𝑖 are passed through the command 

filter to obtain the output signal 𝑧𝑖,1. The tracking error before and after compensation is defined as 

𝑒𝑖 = 𝑥𝑖 − 𝑧𝑖,1 and 𝑆𝑖 = 𝑒𝑖 − 𝜑𝑖, respectively, and 𝜑𝑖 is the filtering error compensation signal. 

The Lyapunov function is designed as 

 𝑉𝑖 =
1

2
𝑆𝑖
2
+

1

2ℎ𝑖
Θ̃
𝑖

2

 (9) 

where Θ̃𝑖 is the estimation error. 

Taking the derivative of Eq. 9 gives 

�̇�𝑖 = 𝑆𝑖�̇�𝑖 +
1

ℎ𝑖
Θ̃𝑖Θ̇̃𝑖 

 = 𝑆𝑖(𝑔𝑖𝑥𝑖+1 + 𝑓𝑖 − �̇�𝑖,1 − �̇�𝑖) −
1

ℎ𝑖
Θ̃𝑖Θ̂

̇
𝑖 (10) 

Because the system function 𝑓𝑖 is unknown, 

 𝑓𝑖(�̄�𝑖) = 𝜃𝑖
∗𝑇𝜉𝑖(�̄�𝑖) + 𝛿𝑖

*
 (11) 
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is obtained with the help of the approximation ability of the neural network, where 𝜃𝑖
* is the optimal 

weight vector, 𝛿𝑖
* is the minimum approximation error, and 𝜉𝑖(𝑥𝑖) is a vector-valued function. 

And then it follows from Young's inequality 

𝑆𝑖𝑓𝑖 = 𝑆𝑖𝜃𝑖
𝑇𝜉𝑖(�̄�𝑖) + 𝑆𝑖𝛿𝑖 

 ≤
𝑆𝑖
2
Θ𝑖𝜉𝑖

𝑇𝜉𝑖

2𝜀
𝑖
2

+
𝜀𝑖
2

2
+
𝑆𝑖
2

2
+
𝛿𝑚
2

2
 (12) 

where 𝜀𝑖 is any positive constant and 𝛿𝑚 represents the upper bound of the approximation error. 

Equation (10) can be rewritten as 

�̇�𝑖 = 𝑆𝑖(𝑔𝑖𝑥𝑖+1 + 𝑓𝑖 − �̇�𝑖,1 − �̇�𝑖) −
1

ℎ𝑖
Θ̃𝑖Θ̇̂𝑖 

 ≤ 𝑔𝑖𝑆𝑖𝑥𝑖+1 +
𝑆𝑖
2
Θ𝑖𝜉𝑖

𝑇𝜉𝑖

2𝜀
𝑖
2

+
𝑆𝑖
2

2
+
𝜀𝑖
2

2
+
𝛿𝑚
2

2
− 𝑆𝑖�̇�𝑖,1 − 𝑆𝑖�̇�𝑖 −

1

ℎ𝑖
Θ̃𝑖Θ̂

̇
𝑖 (13) 

Next, the virtual control signal is designed to be 

 𝛼𝑖 = (−𝑘𝑖𝑆𝑖 −
𝑆𝑖Θ̂𝑖𝜉𝑖

𝑇𝜉𝑖

2𝜀
𝑖
2

−
𝑆𝑖

2
+ �̇�𝑖,1 + �̇�𝑖) /𝑔𝑖 (14) 

Substituting (14) into (13) yields 

 �̇�𝑖 ≤ −𝑘𝑖𝑆𝑖
2
+
𝑆𝑖
2
Θ̃𝑖𝜉𝑖

𝑇𝜉𝑖

2𝜀
𝑖
2

−
1

ℎ𝑖
Θ̃𝑖Θ̂

̇
𝑖 +

𝜀𝑖
2

2
+
𝛿𝑚
2

2
 (15) 

The adaptive law is designed to be 

 Θ̂
̇
𝑖
=

ℎ𝑖𝑆𝑖
2
𝜉𝑖
𝑇𝜉𝑖

2𝜀
𝑖
2

− 𝜎𝑖Θ̂𝑖 (16) 

Substituting equation (16) into (15) yields 

 �̇�𝑖 ≤ −𝑘𝑖𝑆𝑖
2
+ 𝜎𝑖

Θ̂𝑖Θ̃𝑖

ℎ𝑖
+
𝜀𝑖
2

2
+
𝛿𝑚
2

2
 (17) 

Because 
𝜎𝑖Θ̂𝑖Θ̃𝑖

ℎ𝑖
≤

𝜎𝑖Θ𝑖
2

2ℎ𝑖
−
𝜎𝑖Θ̃𝑖

2

2ℎ𝑖
, we get  

�̇�𝑖 ≤ −𝑘𝑖𝑆𝑖
2 −

𝜎𝑖Θ̃𝑖
2

2ℎ𝑖
+
𝜎𝑖Θ𝑖

2

2ℎ𝑖
+
𝜀𝑖
2

2
+
𝛿𝑚
2

2
 

 ≤ −𝜆𝑖𝑉𝑖 + 𝜂𝑖 (18) 

where 𝜆𝑖 = 𝑚𝑖𝑛{2𝑘𝑖 , 𝜎𝑖} and 𝜂𝑖 =
𝜀𝑖
2

2
+
𝛿𝑚
2

2
+
𝜎𝑖Θ𝑖

2

2ℎ𝑖
 are positive constants. Similarly, at Step n, the 

actual control signal and the corresponding adaptive law Θ̇̂𝑛 are designed as 

 

{
 
 

 
 𝑢 = (−𝑘𝑛𝑆𝑛 −

𝑆𝑛Θ̂𝑛𝜉𝑛
𝑇𝜉𝑛

2𝜀𝑛
2

−
𝑆𝑛

2
+ �̇�𝑛,1 + �̇�𝑛) /𝑔𝑛

Θ̂
̇
𝑛 =

ℎ𝑛𝑆𝑛
2
𝜉𝑛
𝑇𝜉𝑛

2𝜀𝑛
2

− 𝜎𝑛Θ̂𝑛

 (19) 

Integrating both sides of equation (18) yields 
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 0 ≤ 𝑉𝑖(𝑡) ≤
𝜂𝑖

𝜆𝑖
+ (𝑉𝑖(0) −

𝜂𝑖

𝜆𝑖
) 𝑒−𝜆𝑖𝑡 (20) 

Obviously 𝑙𝑖𝑚
𝑡→∞

𝑉𝑖(𝑡) =
𝜂𝑖

𝜆𝑖
, this means as well as 𝑙𝑖𝑚

𝑡→∞
|Θ̃𝑖(𝑡)| ≤ √

2ℎ𝑖𝜂𝑖

𝜆𝑖
; Moreover, the error 

convergence range can be adjusted by adjusting the constant 𝜆𝑖 . In summary, the compensated 

tracking error 𝑆𝑖 as well as the estimation error Θ̃𝑖 converge asymptotically. 

4. Simulation analysis 

The following nonlinear system is considered for simulation analysis 

 

{
 

 �̇�1 = 𝑔1𝑥2 + 𝑓1 (𝑥1) ,

�̇�2 = 𝑔2𝑢 + 𝑓2 (𝑥1 + 𝑥2) ,

𝑦 = 𝑥1,

 (21) 

where 𝑔1 = 𝑔2 = 1, 𝑓1(𝑥1) = 2𝑥1
2 and 𝑓2(𝑥1, 𝑥2) = 𝑥1 + 𝑐𝑜𝑠 𝑥2. 

The control signal and the adaptation law are designed as 

 

{
 
 
 

 
 
 𝛼1 = (−𝑘1𝑆1 −

𝑆1Θ̂1𝜉1
𝑇𝜉1

2𝜀
1

2
−
𝑆1

2
+ �̇�1,1 + �̇�1)/𝑔1

𝑢 = (−𝑘2𝑆2 −
𝑆2Θ̂2𝜉2

𝑇𝜉2

2𝜀
2

2
−
𝑆2

2
+ �̇�2,1 + �̇�2) /𝑔2

Θ̂
̇
𝑖 =

ℎ𝑖𝑆𝑖
2
𝜉𝑖
𝑇𝜉𝑖

2𝜀
𝑖
2

− 𝜎𝑖Θ̂𝑖, 𝑖 = 1,2

 (22) 

The filtering error compensation system is described as follows: 

 

{
 
 

 
 �̇�1 = 𝑎𝜑2 + 𝑏 (𝑧1,1 − 𝑦𝑟) − 𝑐𝜑1,

�̇�2 = 𝑎𝜑3 + 𝑏 (𝑧2,1 − 𝛼1) − 𝑎𝜑1 − 𝑐𝜑2,

�̇�3 = −𝑐𝜑3 − 𝑎𝜑2.

 (23) 

The reference signal is 𝑦𝑟 = 𝑠𝑖𝑛(𝑡), the initial values of all variables are set to 0, the number of 

nodes of the neural network is chosen to be 30, and the kernel width is set to be 3. The command 

filter parameters are set to𝛾𝑖 = 2 , 𝛽𝑖 = 50 . The parameters of the filtering error compensation 

mechanism are chosen as𝑎 = 3,𝑏 = 3,𝑐 = 5. The parameters of the controller and the adaptive law 

are chosen as 𝑘1 = 5,𝑘2 = 20,𝜀1 = 1,𝜎 = 0.1,ℎ1 = ℎ2 = 20. The simulation case was run on a 

matlab 2022a and the results are shown in Figures 1-5. 
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Figure 1: tracking performance Figure 2: filter performance 

  

Figure 3: control signal Figure 4: filter compensation signals 

 

Figure 5: neural network norms 

Figure 1 shows the tracking effect of the system output. It can be seen that the output of the 

controlled system accurately tracks the reference signal under the action of the designed neural 

network adaptive command filter controller. Figure 2 shows the tracking performance of the filter. It 

can be seen that the filter output achieves accurate tracking of the input signal. Figure 3 shows the 

final control signal. Fig. 4 shows the filtering error compensation signal, which completes the accurate 

compensation of transient error in the initial stage and tends to be stable. Fig. 5 shows the convergence 

of the norm of the neural network, which represents the approximation process of the neural network 

to the unknown function. In summary, the control strategy designed in this work achieves the desired 

control performance. 
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5. Conclusion 

In this paper, the adaptive command filter control algorithm is studied for high-order nonlinear 

systems with strict feedback. Firstly, the command filter was used to avoid the computational 

complexity explosion inherent in the traditional backstepping method, and then the filtering error 

compensation signal was designed to alleviate the negative impact of the filtering error on the whole 

closed-loop system. Then radial basis function neural network is applied to deal with the system 

uncertainty. The final simulation results show that the proposed neural network adaptive controller 

can track the reference signal accurately. 
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