

Optimization of Distributed UAV Swarm Placement for

Target Localization Using Multiple Heuristic Algorithms

Based on Compressive Sensing

Zeyu Du
1,6,†

, Luoyu Liu
2,7,†

, Hangyu Zhou
3,8,†

, Ziyi Chen
4,9,†

, Yusen Yao
5,10,*,†

1School of Electronic and Information Engineering, Tongji University, Shanghai,
China
2School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
3College of Electrical and Electronic Information, XiHua University, Sichuan, China
4Department of Electronic Information Engineering, Shenzhen University, Shenzhen,
China
5High School Affiliated to South China Normal University International Department,

Guangzhou, China

63022077861@qq.com
7certainyu@outllook.com
8daqingzpm668@qq.com
91261012062@qq.com
10seeley0518@gmail.com

*corresponding author
†These authors contributed equally to this work and should be considered co-first

authors.

Abstract. Collaborative UAV swarms are increasingly deployed as temporary base stations in

emergency situations to relay communications. This paper designs intelligent optimization

algorithms, which minimizing mutual coherence within a region of interest (ROI) aims to solving

challenge in these scenarios is optimizing the UAVs' locations to avoid mutual signal

interference and ensure high communication quality. Minimizing mutual coherence reduces

the likelihood of signal interference between UAVs. We explore various optimize algorithum,

including Heuristic Search (HS) and Ant Colony Optimization (ACO) and so on. The results
provide insights into each algorithm's performance in dynamic environments, helping to identify

the most suitable approaches for UAV deployment in emergency scenarios. This study

contributes to the development of efficient UAV deployment strategies, enhancing the reliability

of UAV-based communication systems during critical events.

Keywords: UAV swarms, Optimize algorithum, mutual coherence, MIMO radar system.

1. Introduction

UAVs are widely used in aerial photography, mapping, first aid and other scenarios. And UAV swarms
are suitable for performing complex tasks, performing different functions separately and collaborating

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

43

on operations. Relay is an important application scenario for UAV swarm collaboration. When the base

station or other network communication equipment in a certain area is disconnected from the outside

world due to a sudden disaster or other reasons, rescuers can send one or more groups of collaborative
UAV swarms to travel to the area of communication disruption and establish a temporary base station

in the target area.

To ensure compatibility among communication devices, all drones—both transmitting and
receiving—must operate within the same frequency band. Consequently, mutual interference can occur

when two UAVs are transmitting and receiving simultaneously. To mitigate this interference and

maintain communication quality, UAVs must be rapidly deployed to optimal locations once the swarm

reaches the target area. This deployment strategy not only minimizes inter-UAV interference but also
ensures that every target point within the area can effectively receive and transmit radio signals via the

temporary base stations established by the UAVs.

When the number of large UAVs is high, the UAV positions cannot be displayed. Based on this
problem, a literature proposes to develop corresponding intelligent optimization algorithms and deploy

them in UAV swarms to achieve automatic deployment and adjustment of UAV positioning, and tries

to optimize the UAV positions using heuristic algorithms and gradient descent method respectively [1].
However, this paper argues that both the heuristic algorithm and the gradient descent method have their

own drawbacks, and thus are not particularly suitable for relay communication applications in UAV

swarms. In addition, this paper also argues that the deployment algorithm for UAV swarms must ensure

that the endurance of the UAV swarms is as long as possible, since the UAV swarms cannot be
continuously powered during operation and cannot receive solar energy by installing solar panels due to

the limitation of the size of the UAVs. In this paper, we focus on the effect of the algorithm on the UAV

range time by counting the number of operations of the algorithm. A smaller number of operations
corresponds to a longer range time.

This research integrates two existing algorithms, the HS algorithm and the GD algorithm, to create a

new hybrid algorithm that leverages the strengths of both. Additionally, the study explores and

incorporates design principles from several other intelligent optimization algorithms to further enhance
the relay communication capabilities and ultra-long endurance of collaborative drone swarms. The paper

introduces a total of six algorithms, including the combined HS-GD algorithm, and evaluates their

performance based on RSEM, the number of operations, and other key metrics. The algorithms
examined are the HS-GD combination, ACO algorithm, DE algorithm, SA algorithm, GA algorithm,

and PSO algorithm.

2. Literature Review

The introduction highlights the use of UAVs as airborne base stations for communication services and

as data collection and dissemination nodes. One of the research priorities in the field of wireless

communications is how to optimize the deployment of UAVs in three-dimensional space for various

applications.
Early research focused on two-dimensional (2D) deployment of UAVs, with an emphasis on

optimizing the horizontal position of the UAV at a fixed altitude to maximize coverage or minimize

transmission power. However, this approach ignores the impact of altitude on communication
performance.

As research progresses, 3D positioning becomes mainstream, combining altitude as a key

optimization parameter with horizontal positioning. This allows a better balance between path loss and
line-of-sight (LoS) connectivity. For example, literature investigates the trade-off between UAV flight

altitude with path loss and LoS[2].

With the growing demand for networks, the deployment of collaborative UAV swarms has become

a new research hotspot. Nowadays, researchers not only consider the optimal location of individual
UAVs, but also the coordination among multiple UAVs to enhance the coverage and network capacity.

Literature uses a greedy algorithm to determine the minimum number of UAVs and their optimal 3D

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

44

locations [3], while literature introduces UAV clusters to optimize network performance through UAV

cooperation [4].

Around 2017, the rise of artificial intelligence, especially reinforcement learning (RL), introduced
new methods for optimizing UAV 3D positions. RL including Deep Reinforcement Learning (DRL)

techniques such as Deep Q Networks (DQN) and Proximal Policy Optimization (PPO) have been

applied to UAV positioning in NOMA networks [4]. In addition to RL, Evolutionary Algorithms (EAs)
have been widely used for UAV localization using natural selection and genetic evolutionary processes.

Algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) have proven their

effectiveness in 3D UAV localization, especially in terms of convergence speed and global search

capability [5]. Despite significant progress, there are still some challenges and outstanding issues. Real-
time UAV localization in complex, dynamic environments and the integration of multiple intelligent

optimization algorithms, e.g., combining RL and EAs to leverage their respective strengths, are key

areas for future research [5-7].

3. Signal and System Model

The signal model we use is linear frequency modulated continuous wave (LFMCW) chirp waveforms,

because it is as one of the most frequently used modulation methods in UAVs, and it also has the ability
to simplify the hardware and signal processing. In the LFMCW radar system, the frequency of the

transmitted signal increases linearly with time, a property that allows the transmitted signal to be used

in the form of a continuous wave for accurate range measurements to a target. At the same time, we

place a point scatterer, which is placed at a distance d from the transmitter and the receiver. At the
receiver, the received signal r(t) is mixed with the transmitted signal s(t). This results in an intermediate

frequency (IF) signal, which is represented by the following equation.

 𝐼𝐹(𝑡) =
𝛼

𝑑2 𝑒𝑗2𝜋
(𝑓𝑐+𝑠𝑡)

𝑐
𝑑

 (1)

where α is the reflectance, the
𝑑𝜙(𝑡)

𝑑𝑡
= 𝑓𝑐 + 𝑠𝑡is the emitted signal frequency, fc is the starting frequency

and s is the rate of frequency modulation. This IF signal is subsequently used for target detection and

distance estimation.

The system model for target localization in a distributed MIMO radar system uses piggyback

LFMCW transmitters and receivers. Where 𝑁𝑡 is the transmitters, the 𝑁𝑟 One for the receiver,

satisfying𝑁𝑡 + 𝑁𝑟 = 𝑈. The positions of the transmitters and receivers are represented by 𝑃𝑇𝑥
(𝑚)

 and

𝑃𝑅𝑥
(𝑚)

, respectively. Assuming that there are K targets in a two-dimensional region of interest (ROI), and

the position of each target is denoted by𝑡𝑘.

To simplify receiver design, signals from different transmitters are made orthogonal, achievable in
either the time or frequency domain. The transmitted signal is reflected by the target and captured by

the receiver, where it is mixed with the transmitted signal to generate an intermediate frequency (IF)

signal. The IF signal is sampled by an analog-to-digital converter (ADC) to produce discrete time
samples. These samples are used to construct the measurement matrix Ψ, which, together with the

reflection vector α and noise vector n, forms the observation vector y. The observation vector y is thus

a combination of the reflection vector α and noise vector n.

 𝑦 = 𝜓𝛼 + 𝑛 (2)

4. UAV Placement Optimization

The main goal of this research is to minimize mutual coherence by strategically placing UAVs.

Considering that UAV positions are restricted within a specific space (𝑆𝑈𝐴𝑉), the optimization problem
can be formulated as follows:

 𝑚𝑖𝑛 𝒑𝑇𝑥1 ,…,𝒑𝑇𝑥𝑁𝑇,𝒑𝑅𝑥1,…,𝒑𝑅𝑥𝑁𝑅∈𝑆𝑈𝐴𝑉
𝜇(𝛹𝑔𝑟𝑖𝑑) (3)

Given the complexity of solving this optimization problem directly, we propose six algorithms to

approximate a solution.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

45

4.1. Ant Colony Optimization (ACO) Placement Optimization

The operational space of UAVs (represented by 𝑆𝑈𝐴𝑉) will be discretized into a set 𝑆𝑄 consisting of Q

grid points, each representing a potential position of the UAV. Through this discretization, ACO
iteratively searches for a near-optimal solution, emulating the foraging behavior of ants. Pheromone

levels for transmitters and receivers are set to encourage exploration at first. The initial solution is

assigned a high value to ensure that any feasible solution represents an improvement. Specifically, the

initial pheromone level (𝜏0) can be set as:

 𝜏0 =
1

𝑛
 (4)

where (n) is the number of potential UAV positions. This setting ensures that the pheromone levels are
not too high initially, promoting broad exploration. Heuristic information, which guides the ants in

constructing solutions, is calculated based on the distance between positions. The heuristic information

(𝜂𝑖𝑗) for positions (i) and (j) is defined as:

 𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 (5)

where (𝑑𝑖𝑗) is the distance between positions (i) and (j). This ensures that closer positions are more

attractive to the ants. In each iteration, transmitters and receivers are randomly placed on the grid based

on pheromone levels and heuristic information, resulting in effective coverage. The probability (𝑃𝑖𝑗) of

an ant moving from position (i) to position (j) is given by:

 𝑃𝑖𝑗 =
(𝜏𝑖𝑗)𝛼(𝜂𝑖𝑗)𝛽

∑ (𝜏𝑖𝑘)𝛼
𝑘∈allowed (𝜂𝑖𝑘)𝛽 (6)

where (𝜏𝑖𝑗) is the pheromone level, (𝜂𝑖𝑗) is the heuristic information, (𝛼) and (𝛽) are parameters

controlling their relative importance, and allowed is the set of feasible next positions.

The quality of each constructed solution is assessed by calculating its mutual coherence, which

involves deriving the dictionary matrix (𝛹) based on UAV positions and the coherence matrix (𝛹′𝛹).

The objective is to minimize the maximum off-diagonal element of this matrix. Pheromone levels are

adjusted according to the solution's quality, reinforcing optimal solutions and guiding the algorithm
towards better placements. If the current solution achieves lower mutual coherence than the best-known

solution, the best solution is updated, ensuring the algorithm retains the optimal solution identified so

far. Additionally, pheromone levels are gradually decreased to prevent premature convergence,
maintaining a balance between exploration and exploitation by avoiding excessive attraction to current

optimal solutions.

The pseudo-code for the ACO algorithm is given below:

Initialize pheromone levels
Set best_mu to a very high value

For iter = 1 to max_iter do

 For each ant do
 Generate solution p_tx, p_rx

 Calculate mutual coherence mu_temp

 If mu_temp < best_mu then

update best_mu, best_p_tx, best_p_rx
 End If

 Update pheromone levels for p_tx, p_rx

 End For

 Evaporate pheromone levels

End For

Return best_mu, best_p_tx, best_p_rx
It exploits the ability of the ACO algorithm to find high-quality solutions within complex search

spaces, making the approach very appropriate for UAV placement optimization in the case of distributed

sensing.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

46

4.2. Differential Evolution (DE) Placement Optimization

The iterative structure of the DE-based placement algorithm closely resembles that of other evolutionary

algorithms. Unlike heuristic searches, DE employs a population-based strategy to explore the search
space, which helps maintain solution diversity and avoids convergence to local minima—particularly

advantageous in high-dimensional, complex optimization problems like UAV placement.

Initially, a population of potential solutions is generated, with each solution representing positions
for transmitters and receivers. This population is then randomly dispersed across the UAV space to

ensure broad coverage. To evaluate the quality of each solution, mutual coherence must be calculated,

which involves two key tasks: computing the dictionary matrix (𝛹) based on UAV positions and

computing the coherence matrix (𝛹′𝛹). The goal is to minimize the maximum off-diagonal element in
the coherence matrix, a critical factor in UAV placement problems.

For each individual in the population, a mutant vector is created by combining the positions of three

randomly selected solutions, scaled by a mutation factor (F). The mutant vector (𝒗𝑖) is generated as
follows:

 𝒗𝑖 = 𝒙𝑟1 + 𝐹 ⋅ (𝒙𝑟2 − 𝒙𝑟3) (7)

where (𝒙𝑟1, 𝒙𝑟2, 𝒙𝑟3) are randomly selected individuals from the population. A trial vector is then

generated by combining the mutant vector with the current solution, guided by a crossover probability

(CR). The trial vector (𝒖𝑖) is formed as:

 𝑢𝑖𝑗 = {
𝑣𝑖𝑗 if 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅

𝑥𝑖𝑗 otherwise
 (8)

where (𝑟𝑎𝑛𝑑𝑗) is a uniformly distributed random number. The trial vector is checked to ensure it is

within the UAV space boundaries.

It compares the fitness of the trial vector with the current solution; in case of a smaller mutual

coherence, the trial vector replaces the current solution in the population. In this manner, the population
will be driven toward optimal placements with only very good solutions retained. The best solution

found across generations is tracked to guarantee that the algorithm converges toward optimal placements.

The two important issues in the performance of a DE algorithm are appropriate choices of mutation

factor (F) and crossover probability (CR). The amplitude of the mutation vector is usually controlled by
a mutation factor, F, which falls between 0 and 1. Small values of F facilitate fine-tuning in the later

stages of the algorithm; large values of F provide broader exploration in the early stages. A typical

strategy is that F has been taken between 0.5 and 0.9; this value may be chosen by experimental tuning.
The crossover probability, usually denoted by CR, is used to determine how much of the trial vector

should come from the mutant vector. This recommended range is usually between 0 and 1. A higher

value of (CR) would give more weight to the mutant vector, exploring more new solutions, while a
lower value will maintain more of the characteristics of the current solution. Common ranges for this

parameter are between 0.1 and 0.9; the optimal value has to be empirically determined.

Higher values of F and CR can increase the convergence speed but raise the possibility of premature

convergence. Lower values can enhance solution precision but may lower the speed of convergence.
With higher values of F and CR, solution diversity increases, which enables the process to perform a

global search. With lower values, solution diversity goes down, so it favors local search. With improper

choice of parameters, instability results, and large fluctuations in the quality of the solution are noted.
Experimental tuning for F and CR can improve stability.

Experiments on the parameter tuning either by grid search or random search can be done to find the

optimal values of. Then, one can compare the different performances of the algorithms under these
various sets of different parameters to find out which configuration is the best for the problem at hand.

The pseudo-code for the DE algorithm is as follows:

Initialize population

Set initial fitness values to a very high value
For gen = 1 to max_generations do

 For each individual in the population do

 Evaluate the fitness of current solution

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

47

 Create mutant vector

 Generate trial vector through crossover

 Ensure the trial vector is within boundaries
 Evaluate the fitness of trial vector

 If the trial vector is better than the current solution then

 Replace the current solution with the trial vector
 End If

 End For

 Update best solution found so far

End For

Return best_mu, best_p_tx, best_p_rx

4.3. Simulated Annealing (SA) Placement Optimization

In the SA-based placement algorithm, the iterative structure is designed to mimic the annealing process
in metallurgy. This method effectively explores the search space and avoids local minima by allowing

occasional uphill moves.

Initially, positions for transmitters and receivers are generated randomly within the defined UAV

space, ensuring a broad initial search area. The initial temperature (T) and cooling rate (𝛼) are set. The

initial mutual coherence is then calculated by computing the dictionary matrix (𝛹) based on the initial

UAV positions and evaluating the coherence matrix (𝛹′𝛹). The goal is to minimize the maximum off-

diagonal element of this matrix, representing the mutual coherence.
During each iteration, new candidate solutions are generated by adding small random perturbations

to the current positions of transmitters and receivers. This step explores the neighborhood of the current

solution:

𝒑𝑇𝑥
𝑛𝑒𝑤 = 𝒑𝑇𝑥 + (rand(size(𝐩𝑇𝑥)) − 0.5) ⋅ resolution

 𝒑𝑅𝑥
𝑛𝑒𝑤 = 𝒑𝑅𝑥 + (rand(size(𝐩𝑅𝑥)) − 0.5) ⋅ resolution (9)

The new positions are checked to ensure they are within the defined boundaries of the UAV space,

preventing the UAVs from being placed outside the operational area:

𝒑𝑇𝑥
𝑛𝑒𝑤 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝒑𝑇𝑥

𝑛𝑒𝑤 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0])

 𝒑𝑅𝑥
𝑛𝑒𝑤 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝒑𝑅𝑥

𝑛𝑒𝑤 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0]) (10)

The mutual coherence of the new solution is then calculated by computing the dictionary matrix (𝛹)

and the coherence matrix (𝛹′𝛹). The acceptance probability is determined based on the mutual

coherence and the current temperature, allowing occasional acceptance of worse solutions to escape

local minima:

 acceptance_probability= 𝑒𝑥𝑝 (
𝜇−𝜇new

𝑇
) (11)

If the new solution is accepted, the current positions and mutual coherence are updated. If the new

solution is better than the best-known solution, the best solution is updated. The temperature is then
reduced according to the cooling schedule:

 𝑇 = 𝑇 ⋅ 𝛼 (12)

Throughout the process, the best solution found across all iterations is tracked to ensure the algorithm
converges towards the optimal placement. This involves continuously updating the best-known solution

based on the fitness evaluations.

The pseudo-code for the SA algorithm is as follows:
Initialize positions and temperature

Evaluate initial solution

Set best solution to initial solution

For iter = 1 to max_iter do
 Generate new candidate solution

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

48

 Ensure new solution is within boundaries

 Evaluate new solution

 Calculate acceptance probability
 If new solution is accepted then

 Update current solution

 End If

 If current solution is better than best solution then

 Update best solution

 End If

 Cool down temperature
End For

Return best_mu, best_p_tx, best_p_rx

4.4. Genetic Algorithm (GA) Placement Optimization
In general, the basic structure of the GA-based iterative placement algorithm is very close to most of the

evolutionary algorithms. This type of algorithm uses natural selection, crossover, and mutation to evolve

generations of solution populations. It is very good at maintaining solution diversity and thus avoiding
local minimums, which becomes very critical for high-dimensional complex optimization problems like

UAV placement.

First, it creates a population of possible solutions. Each solution corresponds to a set of transmitter

and receiver positions. This population will then be spread randomly to guarantee that the search covers
a wide portion of the defined UAV space. Next, the mutual coherence for the quality evaluation of every

solution in the population will be calculated. This step requires the computation of a dictionary matrix

(𝛹)based on UAV positions and a coherence matrix (𝛹′𝛹). The objective should be such that the
maximum off-diagonal element of this matrix, which is the mutual coherence, is minimized.

The solutions are then ranked based on their fitness values, and the top-performing solutions are

selected to form a mating pool. This step ensures that the best solutions have a higher chance of passing

their genes to the next generation. For each pair of solutions in the mating pool, crossover is performed
to generate offspring. This involves exchanging segments of the parent solutions to create new solutions,

with the crossover operation performed with a certain probability (CR), and the crossover points

randomly selected:

offspring
1

= parent1[1: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡] + parent2[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡 + 1: 𝑒𝑛𝑑]

 offspring
2

= parent2[1: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑜𝑖𝑛𝑡] + parent1[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑜𝑖𝑛𝑡 + 1: 𝑒𝑛𝑑] (13)

Random mutations are introduced to the offspring with a certain probability (MR), involving

randomly altering the positions of some UAVs to explore new areas of the search space:

 mutant𝑖 = offspring
𝑖

+ random_perturbation (14)

The mutated solutions’ positions are checked to ensure they are within the defined boundaries of the

UAV space, preventing the UAVs from being placed outside the operational area. The fitness of the
offspring is then evaluated, and if the offspring have a lower mutual coherence than the current solutions,

they replace the worst-performing solutions in the population. This ensures that only the best solutions

are retained, driving the population towards optimal placements.
Throughout the process, the best solution found across all generations is tracked to ensure the

algorithm converges towards the optimal placement. This involves continuously updating the best-

known solution based on the fitness evaluations.
The pseudo-code for the GA algorithm is as follows:

Initialize population

Set initial fitness values to a very high value

For gen = 1 to max_generations do
 Evaluate fitness of current population

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

49

 Select top-performing solutions for mating pool

 Perform crossover to generate offspring

 Introduce mutations to offspring
 Ensure offspring are within boundaries

 Evaluate fitness of offspring

 Replace worst-performing solutions with offspring
 Update best solution found so far

End For

Return best_mu, best_p_tx, best_p_rx

4.5. Particle Swarm Optimization (PSO) Placement Optimization
In the PSO-based placement algorithm, the iterative structure is designed to mimic the social behavior

of birds flocking or fish schooling. This method effectively explores the search space by leveraging both

individual and collective experiences of the particles.
Initially, positions for transmitters and receivers are generated randomly within the defined UAV

space, ensuring a broad initial search area. Velocities for the particles are also initialized to control their

movement through the search space. The initial personal best positions (p_best) and global best position
(g_best) are set.

The quality of each particle’s position is assessed by calculating the mutual coherence, which

involves computing the dictionary matrix (𝛹) based on the UAV positions and evaluating the coherence

matrix (𝛹′𝛹). The goal is to minimize the maximum off-diagonal element of this matrix, representing
the mutual coherence.

For each particle, the current fitness is compared with its personal best fitness. If the current fitness

is better, the personal best position and fitness are updated. The best fitness of all particles is compared
with the global best fitness, and if any particle’s best fitness is better than the global best fitness, the

global best position and fitness are updated.

The velocity of each particle is updated based on its current velocity, the distance to its personal best

position, and the distance to the global best position. The velocity update formula is:

 𝒗𝑖 = 𝑤𝒗𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (𝒑_𝒃𝒆𝒔𝒕𝑖 − 𝒙𝑖) + 𝑐2 ⋅ 𝑟2 ⋅ (𝒈_𝒃𝒆𝒔𝒕 − 𝒙𝑖) (15)

where (𝑤) is the inertia weight, (𝑐1) and (𝑐2) are cognitive and social coefficients, and (𝑟1) and (𝑟2) are

random numbers between 0 and 1. The position of each particle is then updated based on its updated
velocity:

 𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖 (16)

The updated positions are checked to ensure they are within the defined boundaries of the UAV space,

preventing the UAVs from being placed outside the operational area:

 𝒙𝑖 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝒙𝑖 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0]) (17)

Throughout the process, the best solution found across all iterations is tracked to ensure the algorithm

converges towards the optimal placement. This involves continuously updating the best-known solution
based on the fitness evaluations.

The pseudo-code for the PSO algorithm is as follows:

Initialize positions and velocities

Evaluate initial solutions
Set personal and global bests

For iter = 1 to max_iter do

 For each particle do
 Evaluate fitness of current position

 Update personal best if current fitness is better

 Update global best if any personal best is better

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

50

 End For

 For each particle do

 Update velocity
 Update position

 Ensure position is within boundaries

 End For
 Update best solution found so far

End For

Return best_mu, best_p_tx, best_p_rx

4.6. The Algorithm Combined HS and GD Algorithm
Based on the heuristic algorithm and gradient descent algorithm proposed in the literature [Distributed

UAV Swarm Placement Optimization for Compressive Sensing based Target Localization]. We found

that, in the deployment of UAV localization, the heuristic algorithm has a high localization accuracy,
but the system overhead is very large, once the number of UAVs or the number of target points increases,

or the terrain of the space to be deployed is complex, the total amount of computation will increase

dramatically, which is not conducive to the long-term work of the UAV; and the gradient descent
algorithm, although the consumption of system resources is not high, but the localization accuracy is

not high.

Therefore, this paper tries to combine the advantages of the gradient descent method with low

computing power and the heuristic algorithm with high accuracy. In the selection of the combination
scheme, considering that the combination scheme of "external HS and internal GD" will lead to running

the HS algorithm and the GD algorithm once in each iteration, which will make the system consume a

lot of resources to carry out meaningless calculations, this paper decides to adopt the combination
strategy of "HS first and GD later". ". That is, the HS algorithm is first used to determine the approximate

candidate range of UAV deployment locations, and then the GD algorithm is used to further calculate

the more accurate locations.

In the simulation of this algorithm, the space where the UAVs are to be deployed is an unobstructed
cubic space, the target points are all located on the ground, i.e., a plane of height 0, and the UAVs are

deployed in a plane of height 10. The pseudo-code of the combination algorithm corresponding to the

optimization corresponding to this combination strategy is as follows:

Initialization parameters

For iteration loop starts
If first HS iteration

 initialize temporary correlations

Else

 calculate the approximate ranges of the transmitter and receiver UAV positions and the
corresponding mu values, respectively.

End For

For enter GD iteration
If first GD iteration

 Import the inter-correlation matrix calculated by HS iteration.

Else

calculate more accurate drone candidate positions and their corresponding mu values in the candidate

range.

output the mu value, the position of the transmitting UAV, and the position of the receiving UAV

End For

However, simulation results show that the RMSE performance of this combined algorithm is not

excellent. Compared with simply using the HS algorithm or the GD algorithm, even if the relevant

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

51

parameters are improved, this combination scheme does not show higher superiority. Therefore, in this

paper, we will try to use other intelligent optimization algorithms to deploy the UAV's position.

5. Results and Discussion

In our model, the Region of Interest (ROI), denoted as S, is a 1 m × 1 m 2D plane that contains two

targets. The ROI is discretized into a 10 × 10 grid, with each grid point separated by 0.1 m. The number

of UAVs (U) is chosen from a range of 4 to 12. These UAVs operate within a 3D space (𝑆𝑈𝐴𝑉) with
dimensions of 3 m × 3 m × 3 m, located 4 m above the ROI. For the Linear Frequency Modulated

Continuous Wave (LFMCW) radar system, the carrier frequency (𝑓𝑐) is 60 GHz, with a frequency

modulation slope of 60 MHz/µs and a bandwidth of 1.5 GHz. A total of 256 samples are used for signal

processing. Monte Carlo simulation, denoted as 𝑀𝑐, with 10^4 simulation rounds, is applied to assess
the localization performance under various placement optimization algorithms. Localization

performance is evaluated using the root mean square error (MSE) of the estimation, defined as:

 𝑀𝑆𝐸 =
∑ ‖�̂�𝑘

𝑖 −𝑡𝑘
𝑖 ‖2

𝑖,𝑘

𝐾⋅𝑀𝑐
 (18)

where (�̂�𝑘
𝑖) is the estimated position of the kth target in the ith Monte Carlo round, and (𝑡𝑘

𝑖) is the true

position of the kth target in the ith Monte Carlo trial. K represents the number of targets. Figure 1

illustrates the MSE performance of the CS-based localization for two fixed targets under various
optimized UAV placement strategies. These strategies include random placement (RD), heuristic search

placement (he), gradient descent placement (GD), Optimized UAV (OPT), Ant Colony Optimization

(ACO), Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and

Simulated Annealing (SA). In this scenario, four UAVs are considered, with two serving as transmitters
and two as receivers. The targets are located at [0.2 m, 0.2 m] and [0.8 m, 0.8 m], which correspond

exactly to the grid points in our dictionary. Therefore, it is possible that the two targets are precisely

localized by the UAV swarm without errors if optimization algorithm and SNR condition allows. The
ends of the curves represent the capability of achieving such none error performance, and are noted as

precise estimation points (PEP). Consequently, several well-performing placements, including HE, GD,

ACO, DE, and PSO, can accurately estimate the target locations once a certain SNR threshold is
achieved. In contrast, the RA, GA, OPT, and SA placements do not reach this level of accuracy. Among

all proposed algorithms, ACO reaches its PEP firstly where SNR is about 7.5dB, regardless its poorer

accuracy at lower SNR. On the contrary, SA displays the best accuracy where SNR is below 0dB, though

it has no PEP under 20 dB. The result leads to a possible strategy that UAV swarm can choose different
algorithms to optimize their relative position for better localization performance according to the SNR

of its surroundings.

Figure 1. The MSE performance of 2 fixed targets.

Figure 2 and Figure 3 compare the computational time of various optimization algorithms as they

handle different numbers of UAVs. In Fig 2, the horizontal axis represents the number of UAVs, ranging
from 0 to 12. The curves show the average consuming time of calculation for different algorithms with

different UAVs initial positions. The performance of these algorithms can be categorized into four levels.

The first level includes OPT and SA, which complete their` calculations in just 2 seconds. The second

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

52

level is represented by GD. The third level comprises ACO, GA, and PSO, with their computational

time reaching up to 6 seconds when processing 12 drones. The fourth level is occupied by de, which

takes the longest time to complete calculations. While Fig 3 exhibits the all the distribution of calculation
times of each algorithm under 4 drones (2 transmitters, 2 receivers) with different UAVs initial position,

with the average time points of each algorithm correspond to the point in Fig 2. All algorithms have

relatively stable calculation times except GD and OPT, which prove the robustness of these algorithms.

Figure 2. Computational complexity comparison, in terms of the required calculation time.

Figure 3. The scatter plot of calculation time of different algorithm.

Figure 4 illustrates the impact of UAV count on mutual coherence and MSE performance. The results
demonstrate that increasing the number of UAVs enhances localization accuracy. This improvement is

attributed to the fact that adding more UAVs increases the number of rows in the dictionary matrix

(𝛹𝑔𝑟𝑖𝑑), which facilitates achieving lower mutual coherence. As a result, when UAV placements are

optimized using our algorithms, the mutual coherence of (𝛹𝑔𝑟𝑖𝑑) is further reduced, leading to improved

MSE performance.

Figure 4. The relationship between the localization performance (in terms of MSE performance) and

the number of UAVs.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

53

6. Conclusion

This paper demonstrates the effectiveness of various UAV placement optimization algorithms in

enhancing the localization accuracy of CS-based radar systems in a 3D environment. Through Monte
Carlo simulations, the performance of these algorithms is evaluated by MSE and computational time.

The results highlight that certain algorithms—Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO), and Differential Evolution (DE)—re particularly effective in achieving precise
target localization under specific SNR conditions. Furthermore, the computational efficiency of the

algorithms varies, with some, like the Optimized UAV (OPT) and Simulated Annealing (SA). The

findings also indicate that increasing the number of UAVs enhances localization performance by

reducing mutual coherence in the dictionary matrix 𝛹𝑔𝑟𝑖𝑑 , thus lowering the MSE. Overall, the choice

of UAV placement strategy should be adaptive, depending on the surrounding SNR environment and

the balance between accuracy and calculation complexity. By selecting the most appropriate algorithm,
UAV swarms can optimize their positions more effectively, leading to better localization outcomes in

practical applications.

Acknowledgment

Du Zeyu, Liu Luoyu, Zhou Hangyu, Chen Ziyi and Yusen Yao contributed equally to this work and
should be considered co-first authors.

References

[1] Y. -C. Wang and D. Cabric, "Distributed UAV Swarm Placement Optimization for Compressive
Sensing based Target Localization," 2023 International Conference on Computing,

Networking and Communications (ICNC), Honolulu, HI, USA, 2023, pp. 547-551, doi:

10.1109/ICNC57223.2023.10074263.
[2] D. S. Lakew, A. Masood and S. Cho, "3D UAV Placement and Trajectory Optimization in UAV

Assisted Wireless Networks," 2020 International Conference on Information Networking

(ICOIN), Barcelona, Spain, 2020, pp. 80-82, doi: 10.1109/ICOIN48656.2020.9016553.

[3] J. Won, D. -Y. Kim and J. -W. Lee, "Joint Optimization of Placement, Beamwidth, and Power
Allocation in the UAV-Enabled Network," 2022 13th International Conference on Information

and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2022,

pp. 236-238, doi: 10.1109/ICTC55196.2022.9952708.
[4] B. I. -D. Ghomri, M. Y. Bendimerad and F. T. Bendimerad, "Utilizing Deep Reinforcement

Learning for Optimal UAV 3D Placement in NOMA-UAV Networks," 2024 2nd International

Conference on Electrical Engineering and Automatic Control (ICEEAC), Setif, Algeria, 2024,
pp. 1-5, doi: 10.1109/ICEEAC61226.2024.10576211.

[5] D. S. Lakew, A. Masood and S. Cho, "3D UAV Placement and Trajectory Optimization in UAV

Assisted Wireless Networks," 2020 International Conference on Information Networking

(ICOIN), Barcelona, Spain, 2020, pp. 80-82, doi: 10.1109/ICOIN48656.2020.9016553.
[6] L. Yongjiang, B. Luhao and Z. Dong, "Adaptive digital self-interference cancellation based on

fractional order LMS in LFMCW radar," in Journal of Systems Engineering and Electronics,

vol. 32, no. 3, pp. 573-583, June 2021, doi: 10.23919/JSEE.2021.000049.
[7] Y. Yu, S. Sun, R. N. Madan and A. Petropulu, "Power allocation and waveform design for the

compressive sensing based MIMO radar," in IEEE Transactions on Aerospace and Electronic

Systems, vol. 50, no. 2, pp. 898-909, April 2014, doi: 10.1109/TAES.2014.130088.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/132/2024.20529

54

