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Abstract. Collaborative UAV swarms are increasingly deployed as temporary base stations in 

emergency situations to relay communications. This paper designs intelligent optimization 

algorithms, which minimizing mutual coherence within a region of interest (ROI) aims to solving 

challenge in these scenarios is optimizing the UAVs' locations to avoid mutual signal 

interference and ensure high communication quality.  Minimizing mutual coherence reduces 

the likelihood of signal interference between UAVs. We explore various optimize algorithum, 

including Heuristic Search (HS) and Ant Colony Optimization (ACO) and so on. The results 
provide insights into each algorithm's performance in dynamic environments, helping to identify 

the most suitable approaches for UAV deployment in emergency scenarios. This study 

contributes to the development of efficient UAV deployment strategies, enhancing the reliability 

of UAV-based communication systems during critical events. 

Keywords: UAV swarms, Optimize algorithum, mutual coherence, MIMO radar system. 

1.  Introduction 

UAVs are widely used in aerial photography, mapping, first aid and other scenarios. And UAV swarms 
are suitable for performing complex tasks, performing different functions separately and collaborating 
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on operations. Relay is an important application scenario for UAV swarm collaboration. When the base 

station or other network communication equipment in a certain area is disconnected from the outside 

world due to a sudden disaster or other reasons, rescuers can send one or more groups of collaborative 
UAV swarms to travel to the area of communication disruption and establish a temporary base station 

in the target area. 

To ensure compatibility among communication devices, all drones—both transmitting and 
receiving—must operate within the same frequency band. Consequently, mutual interference can occur 

when two UAVs are transmitting and receiving simultaneously. To mitigate this interference and 

maintain communication quality, UAVs must be rapidly deployed to optimal locations once the swarm 

reaches the target area. This deployment strategy not only minimizes inter-UAV interference but also 
ensures that every target point within the area can effectively receive and transmit radio signals via the 

temporary base stations established by the UAVs. 

When the number of large UAVs is high, the UAV positions cannot be displayed. Based on this 
problem, a literature proposes to develop corresponding intelligent optimization algorithms and deploy 

them in UAV swarms to achieve automatic deployment and adjustment of UAV positioning, and tries 

to optimize the UAV positions using heuristic algorithms and gradient descent method respectively [1]. 
However, this paper argues that both the heuristic algorithm and the gradient descent method have their 

own drawbacks, and thus are not particularly suitable for relay communication applications in UAV 

swarms. In addition, this paper also argues that the deployment algorithm for UAV swarms must ensure 

that the endurance of the UAV swarms is as long as possible, since the UAV swarms cannot be 
continuously powered during operation and cannot receive solar energy by installing solar panels due to 

the limitation of the size of the UAVs. In this paper, we focus on the effect of the algorithm on the UAV 

range time by counting the number of operations of the algorithm. A smaller number of operations 
corresponds to a longer range time. 

This research integrates two existing algorithms, the HS algorithm and the GD algorithm, to create a 

new hybrid algorithm that leverages the strengths of both. Additionally, the study explores and 

incorporates design principles from several other intelligent optimization algorithms to further enhance 
the relay communication capabilities and ultra-long endurance of collaborative drone swarms. The paper 

introduces a total of six algorithms, including the combined HS-GD algorithm, and evaluates their 

performance based on RSEM, the number of operations, and other key metrics. The algorithms 
examined are the HS-GD combination, ACO algorithm, DE algorithm, SA algorithm, GA algorithm, 

and PSO algorithm. 

2.  Literature Review 

The introduction highlights the use of UAVs as airborne base stations for communication services and 

as data collection and dissemination nodes. One of the research priorities in the field of wireless 

communications is how to optimize the deployment of UAVs in three-dimensional space for various 

applications. 
Early research focused on two-dimensional (2D) deployment of UAVs, with an emphasis on 

optimizing the horizontal position of the UAV at a fixed altitude to maximize coverage or minimize 

transmission power. However, this approach ignores the impact of altitude on communication 
performance. 

As research progresses, 3D positioning becomes mainstream, combining altitude as a key 

optimization parameter with horizontal positioning. This allows a better balance between path loss and 
line-of-sight (LoS) connectivity. For example, literature investigates the trade-off between UAV flight 

altitude with path loss and LoS[2]. 

With the growing demand for networks, the deployment of collaborative UAV swarms has become 

a new research hotspot. Nowadays, researchers not only consider the optimal location of individual 
UAVs, but also the coordination among multiple UAVs to enhance the coverage and network capacity. 

Literature uses a greedy algorithm to determine the minimum number of UAVs and their optimal 3D 
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locations [3], while literature introduces UAV clusters to optimize network performance through UAV 

cooperation [4]. 

Around 2017, the rise of artificial intelligence, especially reinforcement learning (RL), introduced 
new methods for optimizing UAV 3D positions. RL including Deep Reinforcement Learning (DRL) 

techniques such as Deep Q Networks (DQN) and Proximal Policy Optimization (PPO) have been 

applied to UAV positioning in NOMA networks [4]. In addition to RL, Evolutionary Algorithms (EAs) 
have been widely used for UAV localization using natural selection and genetic evolutionary processes. 

Algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) have proven their 

effectiveness in 3D UAV localization, especially in terms of convergence speed and global search 

capability [5]. Despite significant progress, there are still some challenges and outstanding issues. Real-
time UAV localization in complex, dynamic environments and the integration of multiple intelligent 

optimization algorithms, e.g., combining RL and EAs to leverage their respective strengths, are key 

areas for future research [5-7]. 

3.  Signal and System Model 

The signal model we use is linear frequency modulated continuous wave (LFMCW) chirp waveforms, 

because it is as one of the most frequently used modulation methods in UAVs, and it also has the ability 
to simplify the hardware and signal processing. In the LFMCW radar system, the frequency of the 

transmitted signal increases linearly with time, a property that allows the transmitted signal to be used 

in the form of a continuous wave for accurate range measurements to a target. At the same time, we 

place a point scatterer, which is placed at a distance d from the transmitter and the receiver. At the 
receiver, the received signal r(t) is mixed with the transmitted signal s(t). This results in an intermediate 

frequency (IF) signal, which is represented by the following equation. 

 𝐼𝐹(𝑡) =
𝛼

𝑑2 𝑒𝑗2𝜋
(𝑓𝑐+𝑠𝑡)

𝑐
𝑑

 (1) 

where α is the reflectance, the
𝑑𝜙(𝑡)

𝑑𝑡
= 𝑓𝑐 + 𝑠𝑡is the emitted signal frequency, fc is the starting frequency 

and s is the rate of frequency modulation. This IF signal is subsequently used for target detection and 

distance estimation. 

The system model for target localization in a distributed MIMO radar system uses piggyback 

LFMCW transmitters and receivers. Where 𝑁𝑡  is the transmitters, the 𝑁𝑟  One for the receiver, 

satisfying𝑁𝑡 + 𝑁𝑟 = 𝑈. The positions of the transmitters and receivers are represented by 𝑃𝑇𝑥
(𝑚)

 and 

𝑃𝑅𝑥
(𝑚)

, respectively. Assuming that there are K targets in a two-dimensional region of interest (ROI), and 

the position of each target is denoted by𝑡𝑘. 

To simplify receiver design, signals from different transmitters are made orthogonal, achievable in 
either the time or frequency domain. The transmitted signal is reflected by the target and captured by 

the receiver, where it is mixed with the transmitted signal to generate an intermediate frequency (IF) 

signal. The IF signal is sampled by an analog-to-digital converter (ADC) to produce discrete time 
samples. These samples are used to construct the measurement matrix Ψ, which, together with the 

reflection vector α and noise vector n, forms the observation vector y. The observation vector y is thus 

a combination of the reflection vector α and noise vector n. 

 𝑦 = 𝜓𝛼 + 𝑛 (2) 

4.  UAV Placement Optimization 

The main goal of this research is to minimize mutual coherence by strategically placing UAVs. 

Considering that UAV positions are restricted within a specific space (𝑆𝑈𝐴𝑉), the optimization problem 
can be formulated as follows: 

 𝑚𝑖𝑛 𝒑𝑇𝑥1 ,…,𝒑𝑇𝑥𝑁𝑇,𝒑𝑅𝑥1,…,𝒑𝑅𝑥𝑁𝑅∈𝑆𝑈𝐴𝑉
𝜇(𝛹𝑔𝑟𝑖𝑑) (3) 

Given the complexity of solving this optimization problem directly, we propose six algorithms to 

approximate a solution. 
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4.1.  Ant Colony Optimization (ACO) Placement Optimization 

The operational space of UAVs (represented by  𝑆𝑈𝐴𝑉) will be discretized into a set 𝑆𝑄 consisting of Q 

grid points, each representing a potential position of the UAV. Through this discretization, ACO 
iteratively searches for a near-optimal solution, emulating the foraging behavior of ants. Pheromone 

levels for transmitters and receivers are set to encourage exploration at first. The initial solution is 

assigned a high value to ensure that any feasible solution represents an improvement. Specifically, the 

initial pheromone level (𝜏0) can be set as: 

 𝜏0 =
1

𝑛
 (4) 

where (n) is the number of potential UAV positions. This setting ensures that the pheromone levels are 
not too high initially, promoting broad exploration. Heuristic information, which guides the ants in 

constructing solutions, is calculated based on the distance between positions. The heuristic information 

(𝜂𝑖𝑗) for positions (i) and (j) is defined as: 

 𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 (5) 

where ( 𝑑𝑖𝑗) is the distance between positions (i) and (j). This ensures that closer positions are more 

attractive to the ants. In each iteration, transmitters and receivers are randomly placed on the grid based 

on pheromone levels and heuristic information, resulting in effective coverage. The probability (𝑃𝑖𝑗) of 

an ant moving from position (i) to position (j) is given by: 

 𝑃𝑖𝑗 =
(𝜏𝑖𝑗)𝛼(𝜂𝑖𝑗)𝛽

∑ (𝜏𝑖𝑘)𝛼
𝑘∈allowed (𝜂𝑖𝑘)𝛽 (6) 

where (𝜏𝑖𝑗) is the pheromone level, (𝜂𝑖𝑗) is the heuristic information, (𝛼) and (𝛽) are parameters 

controlling their relative importance, and allowed is the set of feasible next positions. 

The quality of each constructed solution is assessed by calculating its mutual coherence, which 

involves deriving the dictionary matrix (𝛹) based on UAV positions and the coherence matrix (𝛹′𝛹). 

The objective is to minimize the maximum off-diagonal element of this matrix. Pheromone levels are 

adjusted according to the solution's quality, reinforcing optimal solutions and guiding the algorithm 
towards better placements. If the current solution achieves lower mutual coherence than the best-known 

solution, the best solution is updated, ensuring the algorithm retains the optimal solution identified so 

far. Additionally, pheromone levels are gradually decreased to prevent premature convergence, 
maintaining a balance between exploration and exploitation by avoiding excessive attraction to current 

optimal solutions. 

The pseudo-code for the ACO algorithm is given below: 

Initialize pheromone levels 
Set best_mu to a very high value 

For iter = 1 to max_iter do 

    For each ant do 
        Generate solution p_tx, p_rx 

        Calculate mutual coherence mu_temp 

        If mu_temp < best_mu then 

update best_mu, best_p_tx, best_p_rx 
        End If 

        Update pheromone levels for p_tx, p_rx 

    End For 

    Evaporate pheromone levels 

End For 

Return best_mu, best_p_tx, best_p_rx 
It exploits the ability of the ACO algorithm to find high-quality solutions within complex search 

spaces, making the approach very appropriate for UAV placement optimization in the case of distributed 

sensing. 
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4.2.  Differential Evolution (DE) Placement Optimization 

The iterative structure of the DE-based placement algorithm closely resembles that of other evolutionary 

algorithms. Unlike heuristic searches, DE employs a population-based strategy to explore the search 
space, which helps maintain solution diversity and avoids convergence to local minima—particularly 

advantageous in high-dimensional, complex optimization problems like UAV placement. 

Initially, a population of potential solutions is generated, with each solution representing positions 
for transmitters and receivers. This population is then randomly dispersed across the UAV space to 

ensure broad coverage. To evaluate the quality of each solution, mutual coherence must be calculated, 

which involves two key tasks: computing the dictionary matrix (𝛹) based on UAV positions and 

computing the coherence matrix (𝛹′𝛹). The goal is to minimize the maximum off-diagonal element in 
the coherence matrix, a critical factor in UAV placement problems. 

For each individual in the population, a mutant vector is created by combining the positions of three 

randomly selected solutions, scaled by a mutation factor (F). The mutant vector (𝒗𝑖) is generated as 
follows: 

 𝒗𝑖 = 𝒙𝑟1 + 𝐹 ⋅ (𝒙𝑟2 − 𝒙𝑟3) (7) 

where (𝒙𝑟1, 𝒙𝑟2, 𝒙𝑟3 ) are randomly selected individuals from the population. A trial vector is then 

generated by combining the mutant vector with the current solution, guided by a crossover probability 

(CR). The trial vector (𝒖𝑖) is formed as: 

 𝑢𝑖𝑗 = {
𝑣𝑖𝑗 if 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅

𝑥𝑖𝑗 otherwise
 (8) 

where (𝑟𝑎𝑛𝑑𝑗) is a uniformly distributed random number. The trial vector is checked to ensure it is 

within the UAV space boundaries. 

It compares the fitness of the trial vector with the current solution; in case of a smaller mutual 

coherence, the trial vector replaces the current solution in the population. In this manner, the population 
will be driven toward optimal placements with only very good solutions retained. The best solution 

found across generations is tracked to guarantee that the algorithm converges toward optimal placements. 

The two important issues in the performance of a DE algorithm are appropriate choices of mutation 

factor (F) and crossover probability (CR). The amplitude of the mutation vector is usually controlled by 
a mutation factor, F, which falls between 0 and 1. Small values of F facilitate fine-tuning in the later 

stages of the algorithm; large values of F provide broader exploration in the early stages. A typical 

strategy is that F has been taken between 0.5 and 0.9; this value may be chosen by experimental tuning. 
The crossover probability, usually denoted by CR, is used to determine how much of the trial vector 

should come from the mutant vector. This recommended range is usually between 0 and 1. A higher 

value of (CR) would give more weight to the mutant vector, exploring more new solutions, while a 
lower value will maintain more of the characteristics of the current solution. Common ranges for this 

parameter are between 0.1 and 0.9; the optimal value has to be empirically determined. 

Higher values of F and CR can increase the convergence speed but raise the possibility of premature 

convergence. Lower values can enhance solution precision but may lower the speed of convergence. 
With higher values of F and CR, solution diversity increases, which enables the process to perform a 

global search. With lower values, solution diversity goes down, so it favors local search. With improper 

choice of parameters, instability results, and large fluctuations in the quality of the solution are noted. 
Experimental tuning for F and CR can improve stability. 

Experiments on the parameter tuning either by grid search or random search can be done to find the 

optimal values of. Then, one can compare the different performances of the algorithms under these 
various sets of different parameters to find out which configuration is the best for the problem at hand. 

The pseudo-code for the DE algorithm is as follows: 

Initialize population 

Set initial fitness values to a very high value 
For gen = 1 to max_generations do 

    For each individual in the population do 

        Evaluate the fitness of current solution 
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        Create mutant vector 

        Generate trial vector through crossover 

        Ensure the trial vector is within boundaries 
        Evaluate the fitness of trial vector 

        If the trial vector is better than the current solution then 

            Replace the current solution with the trial vector 
        End If 

    End For 

    Update best solution found so far 

End For 

Return best_mu, best_p_tx, best_p_rx 

4.3.  Simulated Annealing (SA) Placement Optimization 

In the SA-based placement algorithm, the iterative structure is designed to mimic the annealing process 
in metallurgy. This method effectively explores the search space and avoids local minima by allowing 

occasional uphill moves. 

Initially, positions for transmitters and receivers are generated randomly within the defined UAV 

space, ensuring a broad initial search area. The initial temperature (T) and cooling rate (𝛼) are set. The 

initial mutual coherence is then calculated by computing the dictionary matrix (𝛹) based on the initial 

UAV positions and evaluating the coherence matrix (𝛹′𝛹). The goal is to minimize the maximum off-

diagonal element of this matrix, representing the mutual coherence. 
During each iteration, new candidate solutions are generated by adding small random perturbations 

to the current positions of transmitters and receivers. This step explores the neighborhood of the current 

solution: 

𝒑𝑇𝑥
𝑛𝑒𝑤 = 𝒑𝑇𝑥 + (rand(size(𝐩𝑇𝑥)) − 0.5) ⋅ resolution 

 𝒑𝑅𝑥
𝑛𝑒𝑤 = 𝒑𝑅𝑥 + (rand(size(𝐩𝑅𝑥)) − 0.5) ⋅ resolution (9) 

The new positions are checked to ensure they are within the defined boundaries of the UAV space, 

preventing the UAVs from being placed outside the operational area: 

𝒑𝑇𝑥
𝑛𝑒𝑤 = 𝑚𝑎𝑥( 𝑚𝑖𝑛( 𝒑𝑇𝑥

𝑛𝑒𝑤 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0]) 

 𝒑𝑅𝑥
𝑛𝑒𝑤 = 𝑚𝑎𝑥( 𝑚𝑖𝑛( 𝒑𝑅𝑥

𝑛𝑒𝑤 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0]) (10) 

The mutual coherence of the new solution is then calculated by computing the dictionary matrix (𝛹) 

and the coherence matrix (𝛹′𝛹 ). The acceptance probability is determined based on the mutual 

coherence and the current temperature, allowing occasional acceptance of worse solutions to escape 

local minima: 

 acceptance_probability= 𝑒𝑥𝑝 (
𝜇−𝜇new

𝑇
)  (11) 

If the new solution is accepted, the current positions and mutual coherence are updated. If the new 

solution is better than the best-known solution, the best solution is updated. The temperature is then 
reduced according to the cooling schedule: 

 𝑇 = 𝑇 ⋅ 𝛼  (12) 

Throughout the process, the best solution found across all iterations is tracked to ensure the algorithm 
converges towards the optimal placement. This involves continuously updating the best-known solution 

based on the fitness evaluations. 

The pseudo-code for the SA algorithm is as follows: 
Initialize positions and temperature 

Evaluate initial solution 

Set best solution to initial solution 

For iter = 1 to max_iter do 
    Generate new candidate solution 
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    Ensure new solution is within boundaries 

    Evaluate new solution 

    Calculate acceptance probability 
    If new solution is accepted then 

        Update current solution 

    End If 

    If current solution is better than best solution then 

        Update best solution 

    End If 

    Cool down temperature 
End For 

Return best_mu, best_p_tx, best_p_rx 

4.4.  Genetic Algorithm (GA) Placement Optimization 
In general, the basic structure of the GA-based iterative placement algorithm is very close to most of the 

evolutionary algorithms. This type of algorithm uses natural selection, crossover, and mutation to evolve 

generations of solution populations. It is very good at maintaining solution diversity and thus avoiding 
local minimums, which becomes very critical for high-dimensional complex optimization problems like 

UAV placement. 

First, it creates a population of possible solutions. Each solution corresponds to a set of transmitter 

and receiver positions. This population will then be spread randomly to guarantee that the search covers 
a wide portion of the defined UAV space. Next, the mutual coherence for the quality evaluation of every 

solution in the population will be calculated. This step requires the computation of a dictionary matrix 

(𝛹)based on UAV positions and a coherence matrix (𝛹′𝛹). The objective should be such that the 
maximum off-diagonal element of this matrix, which is the mutual coherence, is minimized. 

The solutions are then ranked based on their fitness values, and the top-performing solutions are 

selected to form a mating pool. This step ensures that the best solutions have a higher chance of passing 

their genes to the next generation. For each pair of solutions in the mating pool, crossover is performed 
to generate offspring. This involves exchanging segments of the parent solutions to create new solutions, 

with the crossover operation performed with a certain probability (CR), and the crossover points 

randomly selected: 

offspring
1

= parent1[1: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡] + parent2[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑝𝑜𝑖𝑛𝑡 + 1: 𝑒𝑛𝑑] 

 offspring
2

= parent2[1: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑜𝑖𝑛𝑡] + parent1[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑜𝑖𝑛𝑡 + 1: 𝑒𝑛𝑑] (13) 

Random mutations are introduced to the offspring with a certain probability (MR), involving 

randomly altering the positions of some UAVs to explore new areas of the search space: 

 mutant𝑖 = offspring
𝑖

+ random_perturbation (14) 

The mutated solutions’ positions are checked to ensure they are within the defined boundaries of the 

UAV space, preventing the UAVs from being placed outside the operational area. The fitness of the 
offspring is then evaluated, and if the offspring have a lower mutual coherence than the current solutions, 

they replace the worst-performing solutions in the population. This ensures that only the best solutions 

are retained, driving the population towards optimal placements. 
Throughout the process, the best solution found across all generations is tracked to ensure the 

algorithm converges towards the optimal placement. This involves continuously updating the best-

known solution based on the fitness evaluations. 
The pseudo-code for the GA algorithm is as follows: 

Initialize population 

Set initial fitness values to a very high value 

For gen = 1 to max_generations do 
    Evaluate fitness of current population 
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    Select top-performing solutions for mating pool 

    Perform crossover to generate offspring 

    Introduce mutations to offspring 
    Ensure offspring are within boundaries 

    Evaluate fitness of offspring 

    Replace worst-performing solutions with offspring 
    Update best solution found so far 

End For 

Return best_mu, best_p_tx, best_p_rx 

4.5.  Particle Swarm Optimization (PSO) Placement Optimization 
In the PSO-based placement algorithm, the iterative structure is designed to mimic the social behavior 

of birds flocking or fish schooling. This method effectively explores the search space by leveraging both 

individual and collective experiences of the particles. 
Initially, positions for transmitters and receivers are generated randomly within the defined UAV 

space, ensuring a broad initial search area. Velocities for the particles are also initialized to control their 

movement through the search space. The initial personal best positions (p_best ) and global best position 
(g_best) are set. 

The quality of each particle’s position is assessed by calculating the mutual coherence, which 

involves computing the dictionary matrix (𝛹) based on the UAV positions and evaluating the coherence 

matrix (𝛹′𝛹). The goal is to minimize the maximum off-diagonal element of this matrix, representing 
the mutual coherence. 

For each particle, the current fitness is compared with its personal best fitness. If the current fitness 

is better, the personal best position and fitness are updated. The best fitness of all particles is compared 
with the global best fitness, and if any particle’s best fitness is better than the global best fitness, the 

global best position and fitness are updated. 

The velocity of each particle is updated based on its current velocity, the distance to its personal best 

position, and the distance to the global best position. The velocity update formula is: 

 𝒗𝑖 = 𝑤𝒗𝑖 + 𝑐1 ⋅ 𝑟1 ⋅ (𝒑_𝒃𝒆𝒔𝒕𝑖 − 𝒙𝑖) + 𝑐2 ⋅ 𝑟2 ⋅ (𝒈_𝒃𝒆𝒔𝒕 − 𝒙𝑖) (15) 

where (𝑤) is the inertia weight, (𝑐1) and (𝑐2) are cognitive and social coefficients, and (𝑟1) and (𝑟2) are 

random numbers between 0 and 1. The position of each particle is then updated based on its updated 
velocity: 

 𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖 (16) 

The updated positions are checked to ensure they are within the defined boundaries of the UAV space, 

preventing the UAVs from being placed outside the operational area: 

 𝒙𝑖 = 𝑚𝑎𝑥( 𝑚𝑖𝑛( 𝒙𝑖 , [𝑥𝑙𝑒𝑛𝑔𝑡ℎ, 𝑦𝑙𝑒𝑛𝑔𝑡ℎ, 𝑧𝑙𝑒𝑛𝑔𝑡ℎ]), [0,0,0]) (17) 

Throughout the process, the best solution found across all iterations is tracked to ensure the algorithm 

converges towards the optimal placement. This involves continuously updating the best-known solution 
based on the fitness evaluations. 

The pseudo-code for the PSO algorithm is as follows: 

Initialize positions and velocities 

Evaluate initial solutions 
Set personal and global bests 

For iter = 1 to max_iter do 

    For each particle do 
        Evaluate fitness of current position 

        Update personal best if current fitness is better 

        Update global best if any personal best is better 
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    End For 

    For each particle do 

        Update velocity 
        Update position 

        Ensure position is within boundaries 

    End For 
    Update best solution found so far 

End For 

Return best_mu, best_p_tx, best_p_rx 

4.6.  The Algorithm Combined HS and GD Algorithm 
Based on the heuristic algorithm and gradient descent algorithm proposed in the literature [Distributed 

UAV Swarm Placement Optimization for Compressive Sensing based Target Localization]. We found 

that, in the deployment of UAV localization, the heuristic algorithm has a high localization accuracy, 
but the system overhead is very large, once the number of UAVs or the number of target points increases, 

or the terrain of the space to be deployed is complex, the total amount of computation will increase 

dramatically, which is not conducive to the long-term work of the UAV; and the gradient descent 
algorithm, although the consumption of system resources is not high, but the localization accuracy is 

not high. 

Therefore, this paper tries to combine the advantages of the gradient descent method with low 

computing power and the heuristic algorithm with high accuracy. In the selection of the combination 
scheme, considering that the combination scheme of "external HS and internal GD" will lead to running 

the HS algorithm and the GD algorithm once in each iteration, which will make the system consume a 

lot of resources to carry out meaningless calculations, this paper decides to adopt the combination 
strategy of "HS first and GD later". ". That is, the HS algorithm is first used to determine the approximate 

candidate range of UAV deployment locations, and then the GD algorithm is used to further calculate 

the more accurate locations. 

In the simulation of this algorithm, the space where the UAVs are to be deployed is an unobstructed 
cubic space, the target points are all located on the ground, i.e., a plane of height 0, and the UAVs are 

deployed in a plane of height 10. The pseudo-code of the combination algorithm corresponding to the 

optimization corresponding to this combination strategy is as follows: 
 

Initialization parameters 

For iteration loop starts 
If first HS iteration 

  initialize temporary correlations 

Else 

  calculate the approximate ranges of the transmitter and receiver UAV positions and the 
corresponding mu values, respectively. 

End For 

For enter GD iteration 
If first GD iteration 

   Import the inter-correlation matrix calculated by HS iteration. 

Else 

calculate more accurate drone candidate positions and their corresponding mu values in the candidate 

range. 

output the mu value, the position of the transmitting UAV, and the position of the receiving UAV 

End For 

However, simulation results show that the RMSE performance of this combined algorithm is not 

excellent. Compared with simply using the HS algorithm or the GD algorithm, even if the relevant 
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parameters are improved, this combination scheme does not show higher superiority. Therefore, in this 

paper, we will try to use other intelligent optimization algorithms to deploy the UAV's position. 

5.  Results and Discussion 

In our model, the Region of Interest (ROI), denoted as S, is a 1 m × 1 m 2D plane that contains two 

targets. The ROI is discretized into a 10 × 10 grid, with each grid point separated by 0.1 m. The number 

of UAVs (U) is chosen from a range of 4 to 12. These UAVs operate within a 3D space (𝑆𝑈𝐴𝑉) with 
dimensions of 3 m × 3 m × 3 m, located 4 m above the ROI. For the Linear Frequency Modulated 

Continuous Wave (LFMCW) radar system, the carrier frequency (𝑓𝑐) is 60 GHz, with a frequency 

modulation slope of 60 MHz/µs and a bandwidth of 1.5 GHz. A total of 256 samples are used for signal 

processing. Monte Carlo simulation, denoted as 𝑀𝑐, with 10^4 simulation rounds, is applied to assess 
the localization performance under various placement optimization algorithms. Localization 

performance is evaluated using the root mean square error (MSE) of the estimation, defined as: 

 𝑀𝑆𝐸 =
∑ ‖�̂�𝑘

𝑖 −𝑡𝑘
𝑖 ‖2

𝑖,𝑘

𝐾⋅𝑀𝑐
 (18) 

where (�̂�𝑘
𝑖 ) is the estimated position of the kth target in the ith Monte Carlo round, and (𝑡𝑘

𝑖 ) is the true 

position of the kth target in the ith Monte Carlo trial. K represents the number of targets. Figure 1 

illustrates the MSE performance of the CS-based localization for two fixed targets under various 
optimized UAV placement strategies. These strategies include random placement (RD), heuristic search 

placement (he), gradient descent placement (GD), Optimized UAV (OPT), Ant Colony Optimization 

(ACO), Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and 

Simulated Annealing (SA). In this scenario, four UAVs are considered, with two serving as transmitters 
and two as receivers. The targets are located at [0.2 m, 0.2 m] and [0.8 m, 0.8 m], which correspond 

exactly to the grid points in our dictionary. Therefore, it is possible that the two targets are precisely 

localized by the UAV swarm without errors if optimization algorithm and SNR condition allows. The 
ends of the curves represent the capability of achieving such none error performance, and are noted as 

precise estimation points (PEP). Consequently, several well-performing placements, including HE, GD, 

ACO, DE, and PSO, can accurately estimate the target locations once a certain SNR threshold is 
achieved. In contrast, the RA, GA, OPT, and SA placements do not reach this level of accuracy. Among 

all proposed algorithms, ACO reaches its PEP firstly where SNR is about 7.5dB, regardless its poorer 

accuracy at lower SNR. On the contrary, SA displays the best accuracy where SNR is below 0dB, though 

it has no PEP under 20 dB. The result leads to a possible strategy that UAV swarm can choose different 
algorithms to optimize their relative position for better localization performance according to the SNR 

of its surroundings.  

 

Figure 1. The MSE performance of 2 fixed targets. 

Figure 2 and Figure 3 compare the computational time of various optimization algorithms as they 

handle different numbers of UAVs. In Fig 2, the horizontal axis represents the number of UAVs, ranging 
from 0 to 12. The curves show the average consuming time of calculation for different algorithms with 

different UAVs initial positions. The performance of these algorithms can be categorized into four levels. 

The first level includes OPT and SA, which complete their` calculations in just 2 seconds. The second 
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level is represented by GD. The third level comprises ACO, GA, and PSO, with their computational 

time reaching up to 6 seconds when processing 12 drones. The fourth level is occupied by de, which 

takes the longest time to complete calculations. While Fig 3 exhibits the all the distribution of calculation 
times of each algorithm under 4 drones (2 transmitters, 2 receivers) with different UAVs initial position, 

with the average time points of each algorithm correspond to the point in Fig 2. All algorithms have 

relatively stable calculation times except GD and OPT, which prove the robustness of these algorithms.  

 

Figure 2. Computational complexity comparison, in terms of the required calculation time. 

 

Figure 3. The scatter plot of calculation time of different algorithm. 

Figure 4 illustrates the impact of UAV count on mutual coherence and MSE performance. The results 
demonstrate that increasing the number of UAVs enhances localization accuracy. This improvement is 

attributed to the fact that adding more UAVs increases the number of rows in the dictionary matrix 

(𝛹𝑔𝑟𝑖𝑑), which facilitates achieving lower mutual coherence. As a result, when UAV placements are 

optimized using our algorithms, the mutual coherence of (𝛹𝑔𝑟𝑖𝑑) is further reduced, leading to improved 

MSE performance. 

 

Figure 4. The relationship between the localization performance (in terms of MSE performance) and 

the number of UAVs. 
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6.  Conclusion  

This paper demonstrates the effectiveness of various UAV placement optimization algorithms in 

enhancing the localization accuracy of CS-based radar systems in a 3D environment. Through Monte 
Carlo simulations, the performance of these algorithms is evaluated by MSE and computational time. 

The results highlight that certain algorithms—Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and Differential Evolution (DE)—re particularly effective in achieving precise 
target localization under specific SNR conditions. Furthermore, the computational efficiency of the 

algorithms varies, with some, like the Optimized UAV (OPT) and Simulated Annealing (SA). The 

findings also indicate that increasing the number of UAVs enhances localization performance by 

reducing mutual coherence in the dictionary matrix 𝛹𝑔𝑟𝑖𝑑 , thus lowering the MSE. Overall, the choice 

of UAV placement strategy should be adaptive, depending on the surrounding SNR environment and 

the balance between accuracy and calculation complexity. By selecting the most appropriate algorithm, 
UAV swarms can optimize their positions more effectively, leading to better localization outcomes in 

practical applications. 
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