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Abstract. This research paper examines the diverse factors that affect score difference between 

teams in the NBA scene. With this intent, by utilizing data from the 2012-13 regular season, this 

research aims to develop a predictive model that can forecast the score difference between teams 

for the last 50 games of the season. Additionally, the same model can be expanded and used for 

many  different seasons of NBA data. To accomplish this, the methodology implemented first 

involved a data collection process, where many years of injury data and NBA season data were 

gathered. Next, extensive cleaning was done so all the variable names matched, and only 
significant information remained. Then, by merging the injury data with data from the 2012-

2013 NBA season, a larger, more comprehensive file was created. As last, through the use of 

regression modelling, a base model was created. In addition, factors impacting the score 

difference were considered and adjusted the model accordingly. To validate the final model’s 

prediction, actual score differences in the last 50 games will be compared to the differences given 

by the model, with statistical measurement methods to quantify the accuracy. By doing so, this 

research hopes to provide a more valuable system that produce insight towards basketball sports 

betting. 
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1.  Introduction 

The National Basketball Association (NBA) is one of the most popular and competitive professional 
basketball leagues in the world. The NBA, which was established in 1946, has grown into a large, 
mainstream, global phenomenon that has captivated millions of fans with its intense games, extreme 

athleticism, and nail-biting playoff games. Iconic players such as Michael Jordan, Kobe Bryant, and 
Lebron James have not only impacted the NBA on the court, but also spearheaded globalization and 
influenced many popular trends. Akin to its iconic players, the NBA’s influence reaches further than 
just on the court. 

Parallel to the growth and popularity of the NBA is the rise of sports betting. Betting on sports has 
been around for centuries, with the first documented instance of gambling being by the Ancient Greeks 
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almost 2000 years ago during the Olympic games [1]. Now, in modern times, sports gambling has 
evolved into a sophisticated market with thousands of people analyzing historical data to develop models 
that would maximize one’s potential to win [2]. Sports gambling, in theory, has been identified as simple 
financial markets. Since there are only two specific defined outcomes of a match: a win or a loss. 

Additionally, the beginning and ending time of a matchup is very clear. Yet, regardless of the simplicity 
of the market, there are professionals, commonly known as bookmakers or “bookies,” who create point 
spreads that would drive betting actions and create a balanced betting field between two competing 
teams. 

In sports betting, the point spread is a popular concept designed to compare two teams of varying 
strengths. From a betting perspective, this concept serves as a device that predicts the expected 
difference in the final score between two teams, acting as a tool that provides a balanced betting scenario. 
This, in turn, helps bettors make decisions that will attempt to maximize their winning potential. In 

addition, the point spread not only even the playing field from a betting perspective but also added an 
extra layer of complexity to the wagering process. By assigning a hypothetical final score difference 
between two teams, bookmakers can generate more interest on both sides of a match up. However, the 
assignment of a point spread should be considered in a sophisticated and well thought manner as a poor 
point spread may bring financial risk to the bookmaker. Contrary to the belief that point spreads should 
be assigned objectively, many of the current point spreads published by bookmakers may contain 
personal judgement that then become biases that may influence the point spreads. In addition, rather 

than setting a point spread to maximize the total money bet on each side of a point spread, bookmakers 
may also take a position regarding the outcome of the match and “exploit bettors’ biases” [3, 4]. 

Consequently, the objective of this research is to develop a model that can generate its own point 
spread based on key factors such as injuries, home court advantage, and strength of individual teams. 
The purpose is in hopes that by objectifying the process of generating point spreads, a more accurate 
and unbiased estimate of the final difference between the two teams will be presented. Thus, betters can 
make decisions without the biases presented in point spreads, as they are more intended for the 

bookmakers’ profit. 
The table below reveal the primary data set used in this study, produced by using R [5]. The data set 

had been cleaned and merged with two primary data sets. It is also worth mentioning that the primary 
datasets had already properly cleaned or merged, and the process would be further illustrated in 
Appendix. The primary data set used for the model are the results of the 2012-2013 NBA season, which 
includes the date of the match, the team names and the match’s corresponding point spread, scores, score 
difference, location of the match, injured players, and the total number of injured players for both teams. 

Table 1. Part 1 of the First 6 Rows of the Data Set: 

date team1 team2 pointspread score1 score2 scorediff loc overunder 

2012-11-02 Atlanta Houston -5.5 102 109 7 H 203O 

2012-11-04 Atlanta 
Okla. 
City 

9.5 104 95 -9 V 198O 

2012-11-07 Atlanta Indiana -4.0 89 86 -3 H 192U 

2012-11-09 Atlanta Miami 5.0 89 95 6 H 198U 

2012-11-11 Atlanta 
LA 

Clippers 
6.5 76 89 13 V 196U 

2012-11-12 Atlanta Portland 2.5 95 87 -8 V 193U 
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Table 2. Part 2 of the First 6 Rows of the Data Set 

T1_total_inju
red 

T1inj
.1 

T1inj
.2 

T1inj
.3 

T1inj
.4 

T1inj
.5 

T1inj
.6 

T1inj
.7 

T1inj
.8 

T1inj
.9 

T1inj.
10 

1 
Johan 
Petro 

         

2 
Johan 
Petro 

Josh 
Smith 

        

1 
Johan 
Petro 

         

1 
Johan 
Petro 

         

1 
Johan 

Petro 
         

1 
Johan 
Petro 

         

Table 3. Part 3 of the First 6 Rows of the Data Set 

T1_total-
injured 

T1inj.1 T1inj.2 T1inj.3 T1inj.4 T1inj.5 T1inj.6 T1inj.7 

1 
Johan 
Petro 

      

2 
Johan 
Petro 

Josh 
Smith 

     

1 
Johan 
Petro 

      

1 
Johan 
Petro 

      

1 
Johan 
Petro 

      

1 
Johan 
Petro 

      

Table 4. Part 4 of The First 6 Rows of the Data Set 

T1inj.8 T1inj.9 T1inj.10 T2_total_injured T2inj.1 T2inj.2 T2inj.3 

   2 
Scott 

Machado 
Greg Smith  

   1 
Daniel 
Orton 

  

   2 
Danny 

Granger 
Jeff Ayres  

   3 
Dexter 
Pittman 

Terrel 
Harris 

Dwyane 
Wade 

   3 Grant Hill 
Trey 

Thompkins 

Chauncey 

Billups 

   2 
Elliot 

Williams 
Victor 
Claver 
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Table 5. Part 5 of The First 6 Rows of the Data Set 

T2inj.4 T2inj.5 T2inj.6 T2inj.7 T2inj.8 T2inj.9 T2inj.10 

       

       

       

       

       

       

2.  Methodology 

2.1.  Regression Model 
The three primary random factors affecting NBA competition results are: Home court advantage, 
injuries, and consecutive games, with the regression model is showing the relationship between score 
difference and these variables.  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑇2 −  𝑇1 + 𝐼ℎ𝑜𝑚𝑒 −  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐼𝑖𝑛𝑗𝑢𝑟𝑦 +  𝐼𝑐𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒  

Where 𝑇1,2 is the strength of Team 1 and 2; 𝐼 is the impact of three factors, respectively; 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

is the compensation of error. 

2.2.  Verification of Accuracy of Regression Model 
To verify the accuracy of the predicted results, the r-squared value and mean absolute error (MAE) will 
be calculated every time a random factor that could impact NBA score result is implemented in the 
model. This way, it ensures that there is significance with each implementation. Finally, with the final 

regression model, the last 50 games of the 2012-2013 will be predicted and its MAE and r-squared 
would be compared with the actual point spread. This way, these measurements will indicate how more 
accurate the prediction of the model is than the point spread. 

As mentioned, in this study there will be two measurements used to indicate the accuracy of the 

model: MAE and 𝑟2. Firstly, MAE represents the average magnitude of errors in a set of predictions. 
As a result, MAE provides a clear metric for understanding the model's prediction accuracy. In the 
context of NBA score difference prediction, a lower MAE indicates that the predicted score differences 
closely align with the actual outcomes, signifying a more accurate model.  

𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑦𝑖 − �̂�𝑖  | 

Where 𝑛 represent the total number of observations or data points, 𝑦𝑖 represents the actual observed 

value for the 𝑖-th data point, and | 𝑦𝑖 − �̂�𝑖  | is the absolute error. 

The other metric is the 𝑟2. It is a statistical measure that represents the proportion of the variance in 
the dependent variable (score difference) that is predictable from the independent variables (team 

strength, home court advantage, and injuries). An r-squared value closer to 1 indicates that a higher 
proportion of the variance is explained by the model, suggesting a better fit [6, 7, 8].  

3.  Construction and Development of Regression Model for the NBA 

3.1.  Baseline Model: Strength of Individual Teams (T1 & T2) 

Primarily, the model's foundation will be set as the strength of individual teams. To quantify the strength 
of individuals teams, the average points scored by a team (getscore) and the average points allowed 
(givescore) were calculated using the 2012-2013 NBA data. Specifically, “getscore” represents the mean 
points scored by each team across all games, while the “givescore” represents the mean points allowed 
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by each team in those games. Then an “advantage,” variable was calculated as the difference between 
the two previous values. Differ from the random factors, the strength of each team is a more stable factor 
that represents the inherent power of a team based on its historical performances. As a result, it is used 
as a baseline when predicting score differences, with the random factors being adjustments to this 

baseline. This method also ensures that stronger teams, which would usually score more and allow fewer 
points on average, are accurately reflected in the model’s predictions in having a greater advantage. 

𝑔𝑒𝑡𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) =  
1

𝑛𝑖
∑ 𝑠𝑐𝑜𝑟𝑒1𝑖𝑗

𝑛𝑖

𝑗=1

 

𝑔𝑖𝑣𝑒𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) =  
1

𝑛𝑖
∑ 𝑠𝑐𝑜𝑟𝑒2𝑖𝑗

𝑛𝑖

𝑗=1

 

𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒(𝑇𝑖) =  𝑔𝑒𝑡𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) − 𝑔𝑖𝑣𝑒𝑠𝑐𝑜𝑟𝑒(𝑇𝑖) 

𝑇𝑖 represents a specific team 𝑖, 𝑛𝑖 is the total number of games played by team 𝑖, 𝑠𝑐𝑜𝑟𝑒1𝑖𝑗 represents 

the points scored by team 𝑖 in game 𝑗, 𝑠𝑐𝑜𝑟𝑒2𝑖𝑗 represents the points allowed by team 𝑖 in game 𝑗 which 

corresponds to the score of the opponent team. 

With the initial regression model, the last 50 games of the season were predicted based on the 
calculated team strengths. For each game, the predicted score difference was computed by taking the 
difference in the advantage scores between the two teams involved. These predictions were then 
compared to the actual score differences to evaluate the model's performance as shown in Figure 1. 

 

Figure 1. Regression 1 

In Figure 1, the comparison between the first estimation and actual score difference was visualized 

of the first estimation was visualized with a regression line fitted to the data. The initial model yielded 

an 𝑟2 value of 0.2108, which indicates that approximately 21% of the variance in the score differences 
was explained by the model. Additionally, the Mean Absolute Error (MAE) was calculated to be 9.5237, 
providing a baseline measure of the model's accuracy when implementing other random factors.  

3.2.  Random Factor: Home Court Advantage (Ihome) 
After a baseline was set for the model, the first random factor considered is home court advantage. Home 
court advantage reflects the varying performance of teams when playing on their home court versus 
when they are visitors with teams usually perform better at home than away [9]. For this model, to 
accurately incorporate this factor into the regression model, the strength of each team was calculated 

separately for home and away games. 
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Initially, the focus was on the games where each team were played at home. For these home games, 
the average points scored, and the average points allowed were computed for each team. The difference 
between these values provided the home court advantage, indicating how much better a team performs 
when playing at home compared to away. Similarly, the team's performance as visitors was also 

evaluated to understand their performance when playing away from home. 
The results revealed that the mean score difference for home games was approximately -3.28, 

indicating that, on average, teams scored fewer points than they allowed when playing at home. However, 
this seemingly counterintuitive result reflects the calculation method, where the score difference is 
negative because the analysis is considering the difference from the perspective of the away team. 
Essentially, this means that, on average, Team 1 (the home team) scores higher when playing at home, 
compared to Team 2 (the away team). In fact, the mean score difference of the home games is 
approximately 1.67% higher than at away games, which further exacerbate the importance of 

implementing Home Court Advantage in the model. 
The differences between home and away performances were then visualized in a Figure 2, which 

illustrated the score differences for each team across different conditions—home, away, and average 
performance. The graphical representation clearly showed the significant impact of home court 
advantage on team performance, with most teams exhibiting better scores at home than away. 

 

Figure 2. Home Court Advantage of Each Team 

In the second stage of the model's development, the focus was initially placed on refining the 
predictions for games where teams played at home, before extending the analysis to include all games—
both home and away. This two-part approach aimed to enhance the predictive accuracy by separately 

accounting for the specific advantages and disadvantages teams experience when playing on their home 
court versus away. 

Home-Only Regression: 
The first step involved analyzing only the home games to better understand the impact of home court 

advantage. The regression model predicted the score differences by considering the adjusted home and 
visit advantages for each team. The results, visualized in Figure 3, indicated a bias in the predictions. In 
which, the regression line demonstrated a tendency to underestimate the actual score differences, as 
reflected by an intercept of -5.7651. This downward bias arose because the calculation typically involved 

subtracting a smaller visitor advantage from a larger home advantage. 
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Figure 3. Regression 2 (Home Only) 

To address this, a compensation adjustment was calculated, resulting in a value of approximately -
3.2763. This adjustment aimed to correct the bias in future predictions, bringing them closer to the actual 
outcomes. The inclusion of this compensation improved the model's alignment with the real-world 
dynamics of NBA games, where home court advantage significantly influences the final score difference. 

Overall Regression: 
Extending on the insights gained from the home-only analysis, the model was then extended to 

include all games. This comprehensive regression model incorporated the calculated home and visit 
advantages for each team, along with the previously determined compensation adjustment. 

 

Figure 4. Regression 2 

The results of this overall regression are shown in the "Regression 2" scatter plot, which displays the 
relationship between the predicted and actual score differences for all games. The model demonstrated 

a positive correlation between predictions and outcomes, with a 𝑟2 value of 0.2892, indicating that 
approximately 29% of the variance in score differences was explained by the model. Additionally, the 
Mean Absolute Error (MAE) was reduced to 8.9410, reflecting an improvement in prediction accuracy 
compared to earlier models. 

In this extended model, the prediction process varied based on whether the game was played at home 
or away. For home games, the predicted score difference was calculated by subtracting the visitor's 
advantage from the home team's advantage, with an additional compensation adjustment. Conversely, 

for away games, the compensation was added to adjust the predictions accordingly. 

3.3.  Random Factor: Player Injury (IInjury) 
Building off the insights from previous regression models, the third regression model integrated the 
impact of injuries with home and visit advantages to provide a comprehensive estimation of score 
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differences. This model considered both the number of injured players on each team and their respective 
home or visit advantages, alongside the previously calculated compensation adjustment. 

 

Figure 5. Impact of Injury on Scores                       Figure 6. Impact of Injury on Scores – Average 

In Figure 5a, the graph shows the distribution of team scores across different numbers of injured 
players. Each dot on the scatter plot represents a game, with the x-axis indicating the number of injured 
players and the y-axis representing the team's score in that game. As the number of injured players 
increases, the plot reveals a general trend of declining team scores. Notably, the spread of scores 

becomes narrower as the injury count rises, indicating that teams with more injuries are more likely to 
score lower, and their performance becomes more predictable in a negative sense. The wide range of 
scores when few or no players are injured reflects the variability in team performance when nearly the 
full roster is available. However, as injuries accumulate, this variability decreases, often leading to 
consistently lower performance. 

In comparison, Figure 5b takes the analysis a step further by displaying the average team score for 
each level of injury count. The x-axis still represents the number of injured players, but the y-axis now 

shows the average score that teams with that number of injuries typically achieve. The downward-
sloping trend line in this plot clearly illustrates that the average score decreases as the number of injured 
players increases. This visual confirms that injuries have a negative, cumulative impact on team 
performance. This relationship suggests that even a small number of injuries can significantly reduce a 
team's scoring ability, and the impact becomes more pronounced as more players are sidelined. The 
quadratic nature of the trend line indicates that the effect of each additional injury is not linear; instead, 
it increases at a growing rate as the number of injuries rises. 

However, during the analysis, an outlier was detected when the number of injured players reached 
10, which significantly skewed the regression results. To ensure the accuracy of the model, this abnormal 
value was removed from the dataset. This injury impact model was then integrated into the overall 
regression framework to adjust the predicted score differences based on the number of injured players. 
For home games, the predicted score difference was calculated by adding the injury impact to the home 
team's advantage and subtracting the visitor's adjusted advantage. The previously calculated 
compensation adjustment was then applied. For away games, the process was reversed, adjusting the 
visitor's advantage by the impact of injuries and compensating accordingly. 

To quantify this relationship, a regression equation was established: 

𝑆𝑐𝑜𝑟𝑒 = 97.3691 + 0.8102 ×  𝑖𝑛𝑗 − 0.1778 × 𝑖𝑛𝑗2 

In this equation, 𝑖𝑛𝑗 represents the number of injured players on the team. The linear term indicates 
that for each additional injured player, the team’s score initially decreases by approximately 0.81 points. 

Additionally, the quadratic term reflects the non-linear nature of the impact, showing that the negative 
effect of injuries on team performance intensifies as the number of injured players increases [7]. 
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This model was then integrated into the overall regression framework to adjust the predicted score 
differences based on the number of injured players. For home games, the predicted score difference was 
calculated by adding the injury impact to the home team's advantage and subtracting the visitor's 
adjusted advantage. The previously calculated compensation adjustment was then applied. For away 

games, the process was reversed, adjusting the visitor's advantage by the impact of injuries and 
compensating accordingly. 

 

Figure 7. Regression 3 

With injuries’ impact on the game considered, Figure 6 shows the relationship between the final 
predicted score differences and the actual score differences for all games in the dataset. The scatter plot 
illustrates how well the model's predictions align with the actual outcomes. The red regression line, 
shows a positive correlation, indicating that the model's predictions are generally in line with actual 

results. More precisely, the model's performance was evaluated using the 𝑟2 value and Mean Absolute 

Error (MAE). The 𝑟2  value for this final model was calculated to be 0.2903, indicating that 
approximately 29% of the variance in score differences are explained by this comprehensive model. 
Additionally, the Mean Absolute Error (MAE) was found to be 8.9088, reflecting the model's precision 
in predicting game outcomes. 

3.4.  Random Factor: Consecutive Games (Iconsecutive ) 
The final random factor implemented in the regression model, is the impact of consecutive games on 
team performance. In context, teams playing consecutive games could lead the players with fatigue, 
which in turn can affect a team's scoring ability. The influence of this factor is particularly significant 
in the NBA, where teams often play multiple games within a short period, leading to varying levels of 

rest between competitions. 

 

Figure 8. Impact of Consecutive Games               Figure 9. Impact of Consecutive Games– Average 

In Figure 7a, the graph shows the distribution of team scores based on the number of days since their 
last game, represented as 𝑑𝑎𝑡𝑒𝑑𝑖𝑓𝑓. The scatter plot indicates that as the number of rest days increases, 
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team scores generally improve. When rest is minimal, the spread of scores is wider, suggesting that 
teams perform inconsistently due to fatigue. As rest days accumulate, teams tend to score higher and 

more consistently. An outlier at 𝑑𝑎𝑡𝑒𝑑𝑖𝑓𝑓 = 10 was identified, where the score was lower than expected, 
possibly due to disruptions from an extended break. This outlier was removed from the analysis to ensure 
the model accurately reflects typical performance trends. 

Then in Figure 7b, the graph examines this relationship by showing the average team score for each 

level of 𝑑𝑎𝑡𝑒𝑑𝑖𝑓𝑓. The trend line indicates that average scores increase with more rest, reflecting a 
positive relationship between rest days and performance. The effect is exponential, with each additional 
rest day leading to greater improvements in scores, particularly as rest days increase beyond three to 

five days. This highlights the cumulative benefits of rest and emphasizes the importance of considering 
rest periods in predicting game outcomes. 

The relationship between rest days and team performance was quantified using the following 
regression model, created because of fitting a non-linear regression model to the data: 

𝑆𝑐𝑜𝑟𝑒 = 0.2016 × 1.6027𝑑𝑎𝑡𝑒𝑑𝑖𝑓𝑓 + 97.3289 

In this equation, 𝑑𝑎𝑡𝑒𝑑𝑖𝑓𝑓 represents the number of days since the team's last game. The model was 
fitted using non-linear least squares (NLS) to account for the exponential relationship observed between 
rest days and scores [7]. This model indicates that as the number of days increases, the team’s score 
rises exponentially, reflecting the enhanced performance associated with more rest. The exponential 
term captures how performance improves at an increasing rate with more rest days, while the baseline 

score of 97.3289 represents the team’s average score with minimal rest. 

 

Figure 10. Fitting Result 

At last, with the impact of all considered factors incorporated into the model, the final predictions 
were made, and the performance metrics provide a clear indication of the model’s enhanced predictive 

capability. The 𝑟2 value of 0.2873, which indicates that approximately 28.73% of the variance in actual 
score differences are explained by the model, and the Mean Absolute Error (MAE) of 8.9201, reflecting 

the average deviation of the model’s predictions from the actual score differences.  

4.  Test Results and Discussion 

Finally, with all three random factors considered in the model, the accuracy of the model is tested to 

ensure its superior predictability when compared to the point spread. The point spread, yielded an 𝑟2 
value of 0.2475 and an MAE of 9.1507. In contrast, the final regression model developed achieved an 

𝑟2 value of 0.2873 and an MAE of 8.9201. With both a higher 𝑟2 value and a lower MAE, this 
effectively indicates that there is an improvement in predictive power over the point spread. In addition, 

each time a random factor was implemented in the model, there is a positive correlation with the model’s 
ability to generate accurate score differences. Essentially, this portrays that the factors that were 
implemented in the model were in fact relevant and would impact the results of the game. 
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Specifically, succeeding the creation of the base model, the inclusion of home court advantage 

increased the base model’s 𝑟2 value by approximately 0.78, which adjusted the predicted outcomes 
favorably for home teams that would outperform their opponents on their own court. In addition, the 

consideration of injury data further improved the 𝑟2 to 0.2903, as it accounted for the significant impact 
of player absences on team performance. Finally, incorporating rest periods between consecutive games 
contributed to refining the predictions for fatigued teams that often underperforms when playing back-

to-back games, with the final model achieving a 𝑟2 of 0.2873. Additionally, the MAE decreased from 
9.5237 in the initial model to a final MAE of 8.9201 in the final model.  

In summary, the comparison of the model's performance with the point spread clearly shows that the 

model offers superior predictive accuracy. The improvement in both 𝑟2 and MAE underscores the value 
of integrating multiple relevant factors into the analysis, leading to a more detailed and accurate 
prediction of game outcomes. These findings suggest that the model has strong potential for practical 
applications when precise outcome predictions is needed.  

5.  Limitations  

Although the regression model was shown to be more predictive than the point spread when predicting 
game outcomes for the 2012-2013 season. Yet, there are simplified assumptions made that may would 
negatively impact the accuracy of the model. For example, when considering the impact of injuries, the 
level of injuries was assumed the same across all players. This also implied that the model only 
considered when and when not a player is available to play. Yet, the potential of the negative impact an 
injury may bring to the player on court was not considered, nor the severity. As a result, this would 

potentially contribute to certain inaccuracies of the model. Additionally, another limitation of the model 
is its over-reliance on historical data without accounting for changes during the season. For example, 
sometimes NBA players are traded in the middle of the season which may have impact on the overall 
team strength.  

6.  Future Work 

One potential area for future exploration can be enhancing the current regression model by adapting data 
from multiple NBA seasons. This way, a model with a greater data base would be more stable and 
consistent. In addition, this would involve gathering and cleaning data from other NBA seasons. 
Presumably, also assigning different weighting to different NBA set data as older NBA season results 
would have less of an impact on the predicament of point spread for more recent years. Moreover, one 
could examine how changes in team rosters, coaching strategies, or league-wide rule changes affect the 
model’s predictions. Understanding these dynamics could provide deeper insights into the factors that 
most significantly impact game outcomes. Which would ultimately contribute to a more refined model.  

7.  Conclusion 

In conclusion, this paper has presented a regression model that demonstrated an increase of accuracy 

when predicting NBA score differences than the point spread. By using, MAE and 𝑟2, the model’s 
precision and fit was quantified, which showed the how various random factors affected the model’s 
predictive capabilities. Finally, the results effectively suggested that team strength, as well as random 
factors such as home court advantages, injuries and consecutive games remain critical when attempting 
to predict a game’s outcome.  
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Appendix 

Code Processing 

Initially, a “clean” function was created to automate the cleaning process for multiple HTML files. 
It removes HTML tags and irrelevant characters, handles special characters in point spreads, and splits 
the cleaned data into relevant columns. The cleaned data is then saved as CSV files for NBA seasons 
from 2012-2013 to 2016-2017. Additionally, a helper function “add_year” ensures consistent date 
formatting by correctly assigning the year to each game date. The injury dataset spanning from 2010-
2020 is also read, team names are standardized, and columns are renamed for consistency, resulting in 
the “injuriesFinal.csv” 

In addition, a merge process between the cleaned injury data and game data for the 2012-2013 season 
was done based on matching dates and team names [10]. New variables are created to indicate player 
status, such as being on the injured list (IL), having returned from IL, being out for the season, or having 
not played (DNP). The merged data tracks player availability for each game, handling various conditions. 
The final dataset, “injurywork.csv” includes columns indicating the total number of injured players for 
each team and specific details about injured players. Additional processing splits the injury columns into 
individual columns for easier analysis, resulting in “injurywork_corrected.csv”.  
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