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Abstract. This paper puts forward an improved ICP algorithm to improve the robustness of point 

cloud registration in complex urban environment, and adopts adaptive iterative control to solve 

the limitations of traditional ICP algorithm such as premature convergence or over-fitting caused 

by static iteration. Sobel convolution enhances the response ability of the algorithm to the 

complexity of the environment, and dynamically adjusts the iteration limit according to the 

feature difference of the point cloud, thus improving the registration accuracy and calculation 

efficiency. According to a large number of experiments on KITTI dataset, compared with the 

traditional ICP method, the algorithm can effectively reduce the root mean square error and 

improve the registration accuracy. These results verify the effectiveness and robustness of the 

algorithm in autonomous driving, robot navigation and urban mapping. 

Keywords: Synchronous Positioning and Map Construction, Point Cloud Registration, Iterative 

Nearest Point, Adaptive Iterative Control, Sobel Convolution. 

1.  Introduction 

SLAM functionalities have importantly been improved with the arrival of 5G technology, introducing 
communication at high speed and low latency. Considering that SLAM is important in such fields as 
robot navigation, autonomous driving, unmanned logistics, and IoV, real-time navigation of vehicles at 
an obstruction-avoiding distance is guaranteed and, consequently, the support in warehouse drawing 
necessary for delivery accuracy. SLAM further enhances the structuring and transportation in IoT of 
Vehicles, improving safety and efficiency in the management of transport. 

The technology of simultaneous localization and map construction was born in 1980s, which solved 

the problem of autonomous localization and map construction of robots in unknown environment [1]. 
In recent years, with the development of computing power, sensor technology and algorithm, SLAM 
system has made remarkable progress. For example, ORB-SLAM is a feature-based visual SLAM 
method, which is suitable for monocular, stereo, and RGB-D cameras. It makes key frame selection, 
location, and map construction [2] through ORB features, and reduces the dependence on lidar through 
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visual sensors, making the system more economical and portable [3]. In addition, direct SLAM methods, 
such as LSD-SLAM, directly use pixel brightness information for image registration without extracting 
feature points [4]. However, SLAM system, especially the system based on point cloud data, still faces 
some challenges, such as environmental reflectivity [5] and transient map [6] caused by moving objects 

will cause a decline of the accuracy of lidar data, which will lead to the instantaneity of the map. In the 
absence of obvious features, point cloud registration may mislead the algorithm and lead to “position 
loss” [7].  

As an indispensable part of SLAM, ICP algorithm achieves optimal overlap by registering two 
groups of 3D point clouds [8]. This algorithm achieves accurate registration by iteratively finding 
corresponding points, calculating the optimal rigid body transformation matrix, and minimizing the sum 
of squares of errors. Although ICP faces the challenge of large amount of calculation and strong 
dependence on initial estimation when dealing with large-scale complex scenes, its accuracy is enough 

to meet the needs of most modern SLAM systems [8]. There are two main variants of ICP algorithm: 
point-to-point and point-to-plane Point-to-point ICP matches each point in the source point cloud with 
the nearest point in the target point cloud, but it may converge slowly in complex shapes and be sensitive 
to noise [9,10]. Point-to-plane ICP introduces surface normal to minimize errors, but it requires accurate 
normal calculation, which may be unstable in sparse or low-density point clouds [11,12]. In order to 
overcome the limitations of ICP algorithm in complex environment, this paper proposes an improved 
algorithm, which optimizes the registration process by dynamically adjusting the number of iterations, 

thus improving its accuracy in various application scenarios. 

2.  ICP Algorithm and Its Limitations 
The core of Iterative Nearest Point (ICP) algorithm is to achieve optimal registration by minimizing the 
distance between two point clouds, that is, given two point clouds P and Q. The goal of ICP algorithm 
is to find an optimal transformation (including rotation and translation) to minimize the distance between 

the transformed point cloud P and the point cloud Q. This can be calculated in Eq. (1): 

𝐸(𝑅, 𝑡) = ∑ |

𝑁

𝑖=1

𝑅 ⋅ 𝑃𝑖 + 𝑡 − 𝑄𝑖|2 (1) 

Here 𝑅 stands for rotation matrix, 𝑡 stands for translation vector, and 𝑃𝑖 and 𝑄𝑖 are the corresponding 
points in point clouds 𝑃 and Q. 

Although ICP algorithm shows powerful functions in many applications, it also faces some 

limitations when dealing with complex environments, especially in the case of partial overlap, noise and 
poor initial alignment, the performance of ICP algorithm will be significantly affected. These limitations 
are mainly due to the fixed iterative mechanism of the algorithm, which cannot be adjusted adaptively 
according to the change of environmental complexity. This study will explain in detail the reasons for 
these limitations: 

2.1.  Convergence Issues in Complex Environments 

The convergence behavior of ICP is influenced by environmental complexity, including point cloud 
geometry, noise, and overlap. 

Convergence in advance (under-fitting): When the features in the data set are simple, the objective 

function 𝐸(𝑅, 𝑡) may converge quickly at the initial stage of training, resulting in the model not being 
able to fully learn the complex patterns in the data, and finally showing under-fitting. This occurs when 
the algorithm reaches a local minimum that appears optimal due to the lack of significant geometric 

features or noise. Mathematically, this can be expressed as (before reaching the global minimum): 
𝜕𝐸(𝑅, 𝑡)

𝜕𝑅
,
𝜕𝐸(𝑅, 𝑡)

𝜕𝑡
→ 0 (2) 

Here, the gradients of the error function with respect to the rotation matrix 𝑅 and the translation 

vector 𝑡 approach zero prematurely, causing the algorithm to stop iterating before finding the global 
optimum. This results in underfitting, where the alignment is suboptimal. 
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Excessive Iteration (Overfitting): Conversely, in complex or noisy environments, the fixed maximum 
number of iterations may cause the algorithm to continue iterating even after meaningful improvement 
has ceased. The presence of noise or highly complex geometric structures can cause the algorithm to 

become trapped in a local minimum. Despite further iterations, the error function 𝐸(𝑅, 𝑡) continues to 

decrease only incrementally (where (k) is large): 

Δ𝐸(𝑅, 𝑡) = 𝐸𝑘+1(𝑅, 𝑡) − 𝐸𝑘(𝑅, 𝑡) ≈ 0 (3) 

However, the quality of the registration does not improve meaningfully, leading to overfitting. This 
situation is characterized by an unnecessary increase in the number of iterations, which not only fails to 
enhance alignment but also wastes computational resources. 

2.2.  Recent ICP Algorithm Improvements 
In recent years, various enhancements to the ICP algorithm have been proposed to address its limitations. 
Chen et al. combined the Super 4PCS algorithm with ICP for better initial alignment, reducing the risk 
of local optima. They also introduced an adaptive method for boundary point elimination, enhancing 
registration accuracy [13]. Zhang et al. proposed an algorithm called “Pruning ICP”, which eliminated 

the wrong point pairs by setting the truncation rate, thus significantly improving the accuracy under 
reasonable cutoff conditions [14]. Bouaziz proposed a new method of sparse ICP, which introduced 
sparse induced norm to optimize the alignment process, thus enhancing the resistance to noise and partial 
overlap [15]. Mr. Zhang proposed the FRICP algorithm, which used the Welsch function to suppress 
noise interference, and introduced the Anderson accelerator to improve the anti-noise ability and 
convergence speed of the algorithm [16]. Harel Biggie et al proposed BO-ICP, which uses Bayesian 
optimization to optimize the initial conditions and improve the accuracy and computational efficiency 

of the ICP algorithm [17]. Rusinkiewicz and Levoy proposed a deformation based on uniform sampling 
in normal space to improve the convergence of sparse surfaces and small features [18]. 

In complex environments, increasing the number of iterations of the ICP algorithm can significantly 
improve its performance in addition to initial alignment, error cancellation, sparse optimization, and 
convergence acceleration. 

3.  Methodology 

This section will discuss the development of improved ICP algorithm in detail to solve the limitations 
of traditional ICP algorithm in complex scenes, such as premature convergence and over-fitting. 

In order to improve the efficiency of ICP algorithm, we propose a method to dynamically adjust the 
maximum number of iterations by analyzing the local feature differences between two points on the 
cloud. We will use Sobel convolution to check the feature map for processing, and adaptively adjust the 
number of iterations according to the results, and increase the number of iterations in complex areas 

with large feature changes to ensure accurate matching. However, reducing the number of iterations in 
simple regions with small feature changes can improve efficiency. Because Sobel convolution is widely 
used in edge detection and gradient calculation, it is very suitable for extracting local feature changes in 
point clouds, which provides a reliable basis for dynamic iterative adjustment strategy [19]. 

The error metric is now influenced by the gradient of the feature differences, which is given by Eq. 
(4): 

𝐸improved(𝑅, 𝑡) = ∑ |𝑅

𝑁

𝑖=1

⋅ 𝑝𝑖 + 𝑡 − 𝑞𝑖|2 + λ ∑ |∇𝐹(𝑝𝑖)

𝑁

𝑖=1

− ∇𝐹(𝑞𝑖)|2 (4) 

Where ∇𝐹 represents the gradient of the feature map, and 𝜆 represents a weight factor to balance the 
two factors of cloud alignment and feature difference. 

(1) The decreasing trend of errors in ICP can be approximately calculated in Eq. (5): 

𝐸𝑘 = 𝐸0 ⋅ exp(−α ⋅ 𝑘) (5) 
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Where 𝐸𝑘  represents the error after the k-th iteration, α represents the convergence speed, and k 
represents the number of iterations. The iterations should stop when the error reduction rate slows down 
in order to get the best results to avoid stopping too early or too late. 

(2) The basis of signal processing is the convolution operation. It can obtain features from the input 
signal. In the field of image processing and point cloud processing, commonly used convolution kernels 
include Sobel kernel and Gaussian kernel, which are effective in obtaining localized feature variations. 

Sobel convolution kernel is especially suitable for edge detection and gradient calculation. Sobel kernel 
has advantages in complex environments, such as cobblestone roads, windows and complex edge 
structures. Because convolution operation can extract features, it is of great significance in signal 
processing. As a kernel function commonly used in image processing and point cloud processing, Sobel 
convolution kernel is good at edge detection and gradient calculation, especially suitable for complex 
environments, such as cobblestone pavement, windows and complex edge structures. Convolution 
operation can effectively extract the local gradient information of input signal, which is very important 
for analyzing the geometric shape of point cloud. In point cloud registration, it can accurately align point 

clouds in challenging scenes. For example, in the cobblestone scene, the edge and shape of the stone 
will have obvious gradient changes, and Sobel kernel can effectively capture these changes. Assuming 

that the input point cloud is 𝑃  and the convolution kernel is 𝐾 , the convolution operation can be 
calculated by Formula (6): 

𝐹 =  𝑃 ∗  𝐾 (6) 

where 𝐹 is the feature map after convolution. For each point in the point cloud, the gradients in the X, 

Y, and Z directions are calculated, resulting in a three-dimensional local feature map 𝐹ₓ, 𝐹ᵧ,  𝐹𝑧 . 
(3) During the registration of two-point clouds 𝑃1 and 𝑃2, local feature maps 𝐹1 and 𝐹2 are extracted 

using convolution operations. To measure the geometric differences between these two-point clouds, 
the feature difference is calculated as Eq. (7): 

Δ𝐹 = ∑ ∑ (𝐹1,𝑖(𝑚, 𝑛) − 𝐹2,𝑖(𝑚, 𝑛))
2

𝑚,𝑛𝑖=𝑥,𝑦,𝑧

(7) 

where Δ𝐹 represents the sum of squared differences in local features between the two-point clouds. A 

larger Δ𝐹 indicates greater geometric differences between the point clouds, requiring more iterations to 
ensure accurate registration. 

(4) Based on the calculated feature differences, we propose a hypothesis that the number of iterations 
is proportional to the logarithm of the feature differences. Specifically, let the base number of iterations 

be  MaxIterationsbase, and the adjustment factor be  α = log(1 + Δ𝐹). Then the dynamically adjusted 

maximum number of iterations MaxIterations can be calculated in Eq. (8): 

MaxIterations = MaxIterationsbase + β ⋅ log(1 + Δ𝐹) (8) 

As a proportional constant, β regulates the influence of feature differences on the number of iterations. 
When the feature difference is large, β will lead to more iterations and improve the registration accuracy. 
On the contrary, when the feature difference is small, β will reduce the number of iterations and improve 
the calculation efficiency. 

The algorithm dynamically adjusts the number of iterations, allocates more computing resources in 

complex scenes to improve accuracy, and reduces the amount of computation in simple scenes to 
improve efficiency, thus achieving the balance between accuracy and efficiency and avoiding over-
fitting and under-fitting. 
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Figure 1. Flowchart of the Improved ICP Algorithm Process 

Figure 1 shows the key steps of the improved Iterative Closest Point (ICP) algorithm, which uses a 
flexible and adaptive way to align point clouds. By using local feature differences, it is possible to reduce 
the root mean square error (RMSE) compared with the standard ICP algorithm. Subsequent chapters 
will discuss the results of this method in detail, including RMSE value and iteration times. 

4.  Experiment and Analysis 

This section will introduce the following contents in turn: Section 4.1: Detailed description and selection 
of the data set used in the experiment. Section 4.2 and 4.3: The results of standard ICP algorithm and 
improved ICP algorithm are shown respectively. Section 4.4: The robustness of the proposed algorithm 
is discussed through detailed experiments based on the specified frame rate interval for all frames of 
data sets A and B (as described in Section 4.1). 

4.1.  Experimental Dataset Description 

To evaluate the performance of the original and improved iterative nearest point algorithm, in this 
section, we use two data sets (city data sets A and B) from KITTI visual benchmark suite to conduct a 
series of simulations. These datasets have been selected to simulate environment of varying complexity, 
providing a comprehensive testbed for evaluating the robustness and accuracy of the algorithms under 
study. 

Table 1. Summary of Datasets A and B 

Scenario Dataset Name Labels 
Registration 
Interval 

Optimization 

Adjustment 
Factor 

Scenario A 2011_09_26_drive_0106 
No cars, 
pedestrians, or other 
objects 

Every 4 frames 
Constant β 
reduced from 
100 to 50 

Complex 
Scenario B 

2011_09_26_drive_0048 7 Cars, 1 Van Every 4 frames  

 
Table 1 shows the key differences in the environmental conditions and registration parameters 

between the two scenarios. 
Parameter Explanations: 
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Scene: The environmental conditions or background reflected by each data set. Scenario A is a 
relatively simple urban environment, while scenario B is more complex and contains moving vehicles. 

Dataset Name: The specific name of the dataset in KITTI Visual Reference Kit. 
Label: Object categories marked in the dataset, which show the existence of dynamic elements, such 

as cars and pedestrians, thus increasing the complexity of the registration process. 
Registration Interval: This is the rate at which registration is performed within the dataset. To see 

how the algorithm behaves responsively, registration is done every four frames for both cases. 
Optimization adjustment factor: it is used to optimize the specific scaling factor in ICP algorithm. In 

Scenario A, the factor is reduced to reduce the impact of dynamic changes, while in Scenario B, it adopts 
a higher optimization level to cope with the increase of environmental complexity. 

4.2.  Original ICP Algorithm 

In order to establish the benchmark for evaluating the improved ICP algorithm, we first implement the 
original point-to-plane ICP algorithm with default parameters. This section will elaborate the process in 
detail and show how the algorithm works on two frames of point cloud data. In sections 4.2 and 4.3, we 
selected the 16th and 19th frames in Scene B to control the variables.  

 
(a) 16th frame 

 
(b) 19th frame 

Figure 2. Scenario B: Frames 16 & 19 Comparison 

Figure 2 shows images of these two frames to show the differences and ensure the consistency of the 
evaluation. 

Firstly, we use the file input/output function of MATLAB to read and process point cloud data from 
two independent frames, load binary data and extract X, Y and Z coordinates, thus forming point clouds 
“ptCloud1” and “ptCloud2”. Then, we use the point-to-plane ICP algorithm, which can effectively align 
smooth surfaces by minimizing the distance from a point in one point cloud to a plane in another point 

cloud. Using MATLAB’s “pcregistericp” function with its default 30 iterations, the source cloud 
(ptCloud1) was aligned with the target cloud (ptCloud2). The algorithm minimized the RMSE between 
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the aligned points and the target planes. Given the high density of point cloud data, the visualization is 
focused on a prominent central section, allowing for a clearer comparison of the differences before and 
after alignment. Figure 3 shows the visualization of the 3D point clouds. 

 
a. Before Default ICP 

 
b. After Default ICP 

Figure 3. the point clouds before and after applying the ICP algorithm 
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Using the default point-to-plane ICP algorithm, the RMSE was 0.5578, indicating the algorithm's 
performance, with lower values representing better alignment. Figure 3 shows some improvement, but 
the degree of overlap between source and target point clouds remains limited. This highlights the 
algorithm's limitations in complex environments, where greater accuracy and overlap are needed. 

Establishing this baseline with the default ICP sets the stage for evaluating the improvements introduced 
in our enhanced ICP algorithm, discussed in the next section. 

4.3.  Improved Algorithm Implementation 
In this section, we describe in detail the process of the improved ICP algorithm. These steps highlight 
the core improvements to the standard ICP method, focusing on feature extraction and dynamic iterative 

tuning. 
Step 1: Preprocessing and Outlier Removal 
The process begins by loading and preprocessing the point cloud data. Outliers are removed using a 

statistical filter to improve point cloud quality. 
Step 2: Feature Extraction 
We then downsample the point clouds using a voxel grid approach to facilitate efficient feature 

extraction. When processing the point clouds, a voxel grid is utilized in order to down-sample the data 

of a point cloud. The voxel grid down-sampling refers to partitioning the data of a point cloud into fixed-
sized cubes (voxels), which are then reduced to one representative point to help in reducing noise within 
the data of the point cloud. This is very important when dealing with complex scenes, as this noise, as 
well as data redundancy, can severely undermine the alignment accuracy. The down-sampling will 
reduce the number of data represented within the point cloud, hence reducing the computational burden 
in subsequent processes; this is very significant when a large-scale point cloud is processed. With the 
aim to extract the features, Sobel convolution kernel is used for edge detection and detecting notable 
changes in the point cloud. 

Step 3: Feature Difference Calculation 
We will calculate the difference of extraction features between two point clouds. By summing the 

square differences, the weight of these differences can be enhanced, and then normalized. 
Step 4: Dynamic Iteration Adjustment 
The core innovation of the algorithm is that it dynamically adjusts the maximum number of iterations 

according to the calculated feature differences, which is considered to be very important to optimize the 
performance of the algorithm [20]. MaxIterationsBase=30 is used as the default iteration number to 

ensure the initial convergence of the algorithm in a simpler scenario. Dynamic adjustment verifies the 
research results of Huang and Lee [20], and they emphasize the importance of dynamic iteration in 
improving the efficiency and accuracy of the algorithm. 

We multiply the logarithmic adjustment factor by 100 and add it to the basic iteration times, and 
increase the iteration times in complex scenes according to the size of feature differences, so that the 
algorithm can capture the corresponding relationship between complex geometric structures more 
effectively. In order to avoid over-fitting or waste of computing resources caused by too many iterations, 
even in complex scenes, the execution time of the algorithm is kept within the controllable range, and 

we set the maximum number of iterations. We use dynamically adjusted iteration times for ICP 
registration to achieve better registration effect. 

Step 5: Visualization of the Registration Process 
The results of the visual registration process can be obtained for comparison between the default ICP 

algorithm and the improved one, with dynamic iterative adjustment. Such visual comparisons can 
effectively evaluate the effectiveness of the improved ICP algorithm to show how it aligns point clouds 
better through dynamic adjustment and also attains higher registration accuracy as compared to the 

default ICP algorithm. 
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a. after default ICP 

 
b. ICP after improvement 

Figure 4. Comparison of point cloud registration results  

Figure 4 shows a comparison of point cloud registration results using default ICP and improved ICP. 
The purple points are the source or non-registered point cloud and are given as input to the program, 
while the green points are the target or registered point cloud, acting as a reference when the point clouds 
are transformed. Initially, a large disparity could be noted in the displacement or rotation between the 
purple (source) and green (target) points. As the registration progresses, a successful alignment is 
indicated by an increased overlap between the purple and green points. The greater the overlap, the 
higher the registration accuracy achieved. 

The improved algorithm has a significantly higher overlap rate, especially when dealing with 
complex objects such as vehicles, buildings, and cobblestone surfaces, which shows that it is excellent 
at accurately identifying and aligning these detailed features. 
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In the final experiment, we dynamically adjust the improved ICP algorithm, and the maximum 
number of iterations is 131, with a mean square error of 0. 4064. In contrast, the traditional ICP method 
only has 30 fixed iterations at most, and the RMSE is 0.5578, which shows that the accuracy of the 
improved algorithm has been significantly improved. Through adaptive iterations, the algorithm can 

deal with the change of point cloud more flexibly and realize more accurate registration. This 
improvement highlights the effectiveness of feature-based adjustment in optimizing registration process. 

Step 6: Validation of Convergence and Overfitting Avoidance 
We conducted additional experiments to evaluate the root mean square error in different iterations to 

test the robustness and optimality of the algorithm in the iteration, and to ensure that the number of 
iterations (131) selected in the dynamic adjustment algorithm will not lead to over-fitting or insufficient 
convergence. 

 

Figure 5. Relationship between Iterations and RMSE 

Figure 5 is a plot of the relationship between RMSE and the number of iterations. The RMSE in this 

graph decreases first with the number of iterations and then stabilizes after some. That means the chosen 
number of iterations of 131 is an optimal one for this alignment task as it effectively avoids overfitting 
and ensures sufficient. 

4.4.  Data Analysis 
Analyzing the experimental data of scenes A and B shows the influence of the improved ICP algorithm 

compared with the original ICP algorithm. The results are summarized as follows according to Table 2 

Table 2. Comparing the original ICP algorithm in Scenes A and B 

Point Cloud Dataset 
Original ICP RMSE 
average(mm) 

Improvement ICP RMSE 
average(mm) 

Improvement 
Effects(%) 

Scenario A 0.5285 0.4892 7.4 

Scenario B 0.5191 0.4212 18.9 

 
In Scenario A, the average root mean square error of the original ICP algorithm is 0.5285 mm due to 

less environmental challenges. After the application of the optimization algorithm, this value is reduced 
to 0.4892 mm, showing an improvement of 7.4%. This modest improvement shows that the algorithm 
can still improve the alignment accuracy in simple scenes and achieve accurate registration with low 
computational overhead. 
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In more complex scenario B, the RMSE of the original ICP algorithm is 0.5191 mm. After the 
application of the optimized algorithm, the numerical value is reduced to 0.4212 mm, an increase of 
18.9%, which shows the strong stability of the algorithm in complex urban environment. 

Because the algorithm performs better in dealing with the variability and complexity of the 

environment, scene B is significantly improved, including dense point clouds, more occlusion and higher 
noise level, which is consistent with our research assumptions, indicating that the optimized ICP 
algorithm is particularly effective in complex environments, and its ability to dynamically adjust and 
optimize the registration process is more prominent in such situations. 

Because the improved ICP algorithm has dynamic characteristics, we decided not to average the 
number of iterations in these experiments. The algorithm automatically adjusts the number of iterations 
according to the feature differences between point clouds, so the number of iterations will change 
according to the complexity of the scene and the alignment requirements. Averaging the number of 

iterations in different experiments will cover up these dynamic adjustments, thus reducing the clarity of 
analysis. We should focus on the adaptability of the algorithm, not the number of static iterations. In 
addition, the effectiveness of the improved ICP algorithm is better reflected by the root mean square 
error value, which directly reflects the alignment quality. 

These scenarios show the adaptability and efficiency of the algorithm under different complexity. In 
Scenario B, the performance is significantly improved, which further proves that the optimized ICP 
algorithm is outstanding in a more challenging environment, so it is very suitable for urban applications 

with complex and changing environments. 

5.  Conclusion  

Compared with the traditional method, the optimized ICP algorithm shows obvious progress in the 
simple and complex urban environment, the method dynamically adjusts parameters according to the 
complexity of the scene, and improves the accuracy of point cloud registration. This makes it more 

robust in difficult situations. This adaptive algorithm not only reduces the root mean square error (RMSE) 
of the algorithm, but also improves the performance of the algorithm under various conditions. 

This paper has proposed an optimized ICP method for the handling of noisy and complex 
environments, which may find applications in SLAM methods, autonomous driving, and 3D mapping. 
Its robustness in these challenging scenarios is of great practical importance. In the following works, the 
algorithm will be combined with machine learning techniques to increase its adaptability and the 
accuracy even further. Lastly, the scalability and real-time nature of the evaluated algorithm mean that 

it will pave the way for new applications in time-sensitive operations and provide key insights into its 
deployment in autonomous systems and other dynamic environment. 
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