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Abstract. Horse racing is a globally viewed sport in which the performance of horses may be 

influenced by numerous factors, with the condition and moisture in the racing surface, known as 

the "going," being one of the most influential. Accurate reporting of the going is essential for 

ensuring fair competition. This study aims to measure the accuracy of reported track conditions 

by utilizing a dataset from three racecourses—Catterick, Chester, and Newmarket. We first 

identified discrepancies suspected to be caused by rounding in reported distances in the data and 

corrected them by reverting them to officially sanctioned distances. We started with linear 

regression models to predict winning times, using key variables such as race distance, class of 

the race, and the reported going. Then we applied log transformation to the data to solve 

heteroscedasticity. The final model will be used to generate prediction intervals for winning 

times under each going conditions, allowing us to figure out which goings might be reasonable 
for a specific race. The results indicate that approximately 6-7% of races were outside of the 

calculated bounds, which may lead to errors in strategic decisions by trainers and bettors. By 

calculating the posterior probabilities of each going condition using Bayesian inference, we 

created a list of reasonable goings for each new race, giving trainers and bettors more accurate 

information so that they can better prepare for future races in the day. 

Keywords: track conditions, linear regression, horse racing, actual going prediction 

1.  Introduction  

Horse racing is a sport involving two or more professionally trained jockeys competing on horses that 
has amassed a large audience worldwide, where the performance of the horses is influenced by a variety 

of factors. One factor, the condition of the racing surface, known as the going, is crucial. Track going is 

classified in a range from firm to heavy, with firm signifying that the track is very dry and in great racing 
condition and heavy meaning that the track is very wet and difficult to run on. This variability can 
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significantly impact the outcome of races, affecting both the horses' performance and the strategies 

employed by trainers and jockeys. Accurate reporting of track conditions is thus essential for ensuring 

fair competition.  
Despite the importance of track going in determining race finishing times and outcomes, there are 

concerns regarding the accuracy and consistency of these reports. In this context, even minor 

inaccuracies in the reported track conditions can have consequences. Trainers may misjudge the 
suitability of the track for their horses, bettors may place wagers based on incorrect information, and the 

overall integrity of the sport may be questioned. This study addresses these concerns by examining the 

reasonableness of reported track goings in accordance with other race conditions.  

The objective of this research is to model horse racing finishing times to confirm the validity of 
reported track goings. By analyzing a comprehensive dataset from three racecourses—Catterick, Chester, 

and Newmarket—we aim to uncover patterns and discrepancies that may point towards inaccuracies in 

the reported track conditions. These courses all share dirt surfaces that are susceptible to changes in 
going and we only explored the flat races ran with no hurdles.  

This holds notable implications for the horse racing industry. By improving the transparency and 

reliability of track condition reports, bettors and stakeholders can make fully informed moves, leading 
to fairer competition and increased trust in the sport's integrity. Accurate reporting of track goings can 

mitigate financial losses for bettors and ensure that trainers and jockeys have the reliable information 

they need to prepare their horses effectively. Furthermore, this study contributes to the broader field of 

sports analytics by demonstrating how data-driven approaches can be applied to verify and improve the 
accuracy of reported information. 

2.  Literature Review 

Much work has been done in previous years to analyze horse racing. However, most studies instead 
focus on the aspect of horse racing that is most applicable to betting, which is the winning horse. In our 

investigation, we found no prior work on predicting or correcting the suspicion of incorrectly reported 

course conditions. Since even more factors affect the outcome of which horse will win, researchers have 

explored a variety of algorithms to improve racing predictions. This review details the different 
approaches and algorithms used by different researchers to create prediction models, focusing on 

Artificial Neural Networks (ANN), Support Vector Regression (SVR), and other techniques. 

2.1.  Artificial Neural Networks (ANN) 
Artificial Neural Networks are frequently used in horse racing predictions because of their usefulness in 

modeling complex relationships between input variables and outcomes. This method involves creating 

a network of nodes (neurons) that process input data through layers, ultimately predicting the outcome 
of the race. 

Williams and Li [1] conducted their research on predicting the outcomes of horse races in Jamaica 

using ANN. 143 races between January and June 2007, with race distances ranging from 1 to 3 

kilometers was used as data. They fed variables, including horse, jockey, past race positions, track 
distance, and finishing times, into their ANN model. To optimize the model's performance, they 

compared four different learning algorithms, dividing the data into 80% for training and 20% for testing. 

This resulted in a 70% accuracy for the ANN model. Similarly, Davoodi and Khanteymoori [2] used an 
ANN to predict horse racing outcomes at a single race track in New York. Their data originated from 

100 races starting in January 2010,using horse weight, race type, trainer, jockey, the number of horses 

in a race, track distance, and weather conditions as input variables. They experimented with five 
different supervised learning algorithms, including Gradient Descent Backpropagation (BP), Gradient 

Descent BP with momentum, Quasi-Newton BFGS, Levenberg-Marquardt, and Conjugate Gradient 

Descent. The study found that while the BP and BP with momentum algorithms were more accurate, 

the Levenberg-Marquardt algorithm was the fastest. The algorithms achieved an average accuracy of 
about 77%. 
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Besides horse racing in sports betting, ANN has also been applied to other topics as seen in Baulch's 

research on predicting winners in rugby league and basketball games [3] and also for predicting NFL 

results [4]. In his research, Baulch used Backpropagation and Conjugate Gradient methods that relied 
on past team performance data such as win-loss records and average scores per game. The accuracy 

levels for rugby ranged from 55% to 58.2%, whereas those for basketball were between 49% and 59%. 

These findings suggest that the ANN has been a useful tool for sports predictions where its accuracy is 
relative to the quantity as well as quality of input data. An improvement in this area has been explored 

by predicting link directions to account for incomplete real-world information [5,6]. Guo and Yang 

tested this method of link predicted with success using recursion on nodes of different ranks on real-

world data from various sources, including the neural networks of C. Elegans and Facebook posts from 
New Orleans, Florida. 

2.2.  Support Vector Regression (SVR) and Other Methods 

Support Vector Regression (SVR) is another technique used to predict race outcomes. It is an ML 
algorithm which typically involves finding a hyperplane that best fits data, making it possible to predict 

continuous values such as finishing times of horses in races. 

 

Figure 1. The S&C Racing System [4] 

 

Robert P. Schumaker[7] applied SVR to predict horse rankings in upcoming races. His model, The 
S&C Racing System, had an amalgamation of several components: a data module, machine learning 

algorithms, a betting engine, and evaluation metrics (Fig.1). Schumaker's model, like the ones before it, 

took into account many features from previous races such as fastest times, win percentage, place 
percentage and average finishing positions. He did not only focus on the prediction accuracy but also in 

the sense of applying different betting strategies for maximum payout optimization — such as 

Win/Place/Show. The S&C Racing System found this happy medium where the payout was maximized 

without losing too much on accuracy. 
In an extension of Schumaker's work, Schumaker and Johnson[8] developed a similar SVR approach 

for greyhound races. With data from over 1,900 races across 31 different dog tracks, they developed a 

model called the AZGreyhound System. It included several betting engines, including more complex 
wagers like Exacta, Trifecta, and Superfecta. These bets required predicting the exact placement of 

multiple dogs, increasing the complexity of the prediction task. The system was evaluated for accuracy, 

payout, and efficiency, with findings indicating that while higher accuracy often led to lower payouts, 
and vice versa, the system was effective in managing this trade-off. 
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Another study using SVR for horse racing predictions involved 20 different features, each assigned 

a value of -1, 0, or 1 [9]. The model was trained on data from December 2016 to February 2017 and 

tested in March 2017. Results were then compared to a baseline known as the morning line, a pre-race 
estimate of betting odds provided by a track handicapper. The SVR model outperformed the baseline, 

achieving a winning percentage of 28% compared to the baseline's 26%, and had higher overall accuracy 

in predicting horses that finished in the top three positions. This comparison highlights the superiority 
of machine learning models like SVR over traditional handicapping methods in predicting race 

outcomes. 

In addition to ANN and SVR, researchers have explored other methodologies and hybrid models to 

predict racing outcomes, often combining multiple algorithms or incorporating domain-specific features 
to enhance predictive performance. An illustrative example is the work done by Bhooshan et al. [10], 

who studied network analysis for predicting outcomes in Major League Baseball (MLB) and the 

National Football League (NFL). They developed directed graphs representing win-loss relationships 
between teams, with the edges weighted based on the number of victories or losses between teams. Their 

ranking algorithm allowed them to order teams based on their overall performance, categorizing them 

into leaders and followers. They also employed logistic regression to predict game outcomes, comparing 
their results with traditional expert rankings. The network analysis approach proved more objective and 

accurate, particularly in the NFL, where it accounted for the entire season's performance rather than just 

recent games. 

A study by Hsinchun Chen and colleagues [11] used ANN and the ID3 algorithm to predict 
greyhound racing outcomes. They initially inputted 50 different variables but later filtered out less 

significant ones to improve the neural network's performance. The ANN model achieved better payouts, 

despite lower accuracy compared to human experts, indicating that it was more effective in identifying 
profitable bets. The researchers reached 34% accuracy with the ID3 algorithm and a payout of $69.20, 

while the ANN achieved 20% accuracy but a higher payout of $124.80. This study underscores the 

importance of balancing accuracy and financial return in predictive modeling. 

3.  Data Preprocessing 

 
(a) Catterick Course                          (b) Newmarket Course                        (c) Chester Course  

Figure 2. Course layout of the three utilized tacetracks [12] 

The maps above show the layouts of each of the courses in the data and their valid racing distances. We 

noticed that many of the distances, especially in Chester and Newmarket, fell between even furlongs (1 

furlong = 220 yds). In the data, however, all races had distance values in yards that would correspond 

to integer furlongs. This led to the suspicion that the distances had been previously rounded to the nearest 
furlong to avoid the variability in race distances often reported by racetracks. 
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Table 1. Every relevant variable available in the utilized dataset, along with a description, excluding 

extraneous logical variables for race classification 

Name Description 

meeting_date date of race in mm/dd format 

race_time time of day of race in military time 

course Catterick, Newmarket, or Chester 

winning_time_secs time of the fastest horse in seconds 

added_money amount of money put in by gamblers 

class classfication of quality of horses 

distance_yards length of race in yards 

going categorical evaluation of dirt condition 

year year the race took place 

 
(a) Before                                                       (b) After 

Figure 3. Linear Models of Winning Time Compared to Distance in Chester Racecourse Before(a) and 

After(b) Data Cleaning. 

Specifically in the data for Chester, there were a group of races with distances of 8 furlongs but there 

isn't an official 8-furlong length at Chester (Figure 3a). We theorize that all the 7 furlong and 122-yard 
races been rounded to 8 furlongs and caused a group of races that were way faster than expected for 8 

furlongs. This issue was also prevalent in Catterick, where many distances were different than the 

official reported distances and may have been rounded to the nearest furlong, sometimes changing the 
actual distance by over 50 yards. Undoing the suspected rounding of the distances for each course to 

their officially sanctioned distances helped to produce more accurate predictions.  

Additionally, in our data, only a few races were conducted at certain distances, especially longer ones 

greater than 12 furlongs. With ~4000 races in total, we removed the data at these underrepresented 
distances with under 100 races to reduce noise and ensure that our predictions would be accurate and 

based on an ample amount of data. Based on the same concept, we also removed a few races with 

extreme classes like 1 or 7 from the courses that only a few races at those classes over the 10-year period. 
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These adjustments helped the data as a whole slightly but improved course specific accuracy 

substantially. In the case of Chester, these adjustments lowered the residual standard error of a linear 

model on winning time to distance from 5.4s to 3.7s and increased the R-Squared value from 0.985 to 
0.991 (Figure 3b). 

4.  Methods  

4.1.  Dataset Exploration 
With a variety of variables tracking a race's circumstances, it is necessary to determine their individual 

impacts on a prediction of the winning time (Table 1). Without this sorting, the additional time 

complexity of considering every variable would make any meaningful predictions impossible to 

compute. Firstly, the most intuitive and important of the variables that can affect the winning time is the 
length of the race, or “distance_yards” in the data. 

Across the 3 courses, there are only 15 distinct distances in which races were conducted, which 

makes it possible to group races together by distance in order to study the impact of the other variables 
upon their times. This is necessary because if we were to study all distances at the same time, it would 

be generally useless as there would be gaps in the winning time data caused by the distances. 

 
                              (a) Linear Regression                        (b) Distribution of Residuals 

Figure 4. Linear Regression of Winning Time to Race Distance for All Courses (a) and a Histogram of 

the Residuals (b) 

A linear regression of just distance against time with no other variables is very strong already and 

gives an R-Squared value of 0.9901 (Figure 4). The residuals of the model are also skewed slightly to 

the right (Figure 4b). This is caused by the other aforementioned track conditions (Table 1). To study 
the effect of other variables on winning time independent of distance, we plotted the variables against 

winning time for every distance and looked at them as a whole. The most standout variables were going 

and class. 
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(a) Ground Condition                                (b) Horse Quality 

Figure 5. Boxplots between Winning Time and Going (a) and Class (b) across all courses at a distance 

of 1540 yards 

 

Figure 6. Correlation Plot of Relevant Variables in the Chester Racecourse, with Circle Size and Color 

Corresponding with Correlation Strength 

The relationship between going and winning time is very logical as horses are expected to be slowed 

down by muddy soil, which is why we see such a strong influence. As the goings get worse, the winning 
times become slower and this trend is not linear ( Figure 5a). Class too, is logically justified as races 

with better horses are expected to finish faster. This is why we see a slight trend downwards in winning 

time as the class decreases, signifying better jockeys and horses (Figure 5b). In the case of course 

specific correlations across all relevant variables, a strong correlation between added_money and class 
is evident across the courses (Figure 6). This makes sense as more prestigious races will attract higher 

bets Figure 5 shows many weaker correlations as well. For example, the season the race was conducted 
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in seems to have some effect on the times. However, they are largely irrelevant. In conclusion, we are 

left with these strong variables to consider: 

(1) course: multiple differences between the three courses  
(2) date: will be used in final daily analysis of going  

(3) winning_time_secs: our response/predicted variable  

(4) distance_yards: a longer distance leads to higher winning time  
(5) class: better horses usually run better  

(6) going: ground quality heavily influences speed 

4.2.  Linear Model 

 

Figure 7. Linear regression model and the outputs 

To obtain expected winning times for each of the different goings, we construct a linear model that takes 

the most important variables into account. The code for this model in R can be seen above. Using this, 
we set distance in yards as the x- axis, and winning time in seconds as y-axis. The other variables like 

class and going are treated categorically because going is not numerical and class does not affect the 

winning time linearly in all courses. We are also not considering and interactions between the variables. 

This means that in this version of the model, class and going do not affect the slope of the regression, 
making all the regression lines for each going parallel. However, after noticing that the longer distances 

are seeing higher variability, we made some changes. 

 
(a) Original Scale                                  (b) Log-Transformed Scale 

Figure 8. Plots of winning time to distance in yards with lines demonstrating changes in variance as 

distance increases before (a) and after (b) a log transformation 
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Figure 9. Discrete R Code for log transformed linear regression model 

Since one of the prerequisites to making a linear model is homoscedasticity, or consistent variance, 

and our original model's variance increased significantly over time, it was invalid (Figure 8a). To correct 
this, we took a log of both sides to eliminate the heteroscedasticity and achieve a more appropriate model 

(Figure 8b). In this version of the model, we are also considering the interaction between the different 

goings and the distance of the races so that the slope of each regression line for the goings can be 
different. Since the goings affect the distances differently, specifically affecting the longer distances 

more, this also helped to build a more comprehensive model. Going forward, all calculations were made 

with the corrected 2nd linear model. 

To achieve the goal of determining whether reported goings are reasonable given specific race 
circumstances, we employ a prediction interval to find the upper and lower bounds of winning time that 

are reasonable for that race given a going. We do this using the “predict” function in R 4.4.1 [13] that 

calculates the bounds using the following equation [14], where y-hat represents the predicted winning 
time, the t value corresponds with the value needed for a 95% confidence, and the expression with the 

square root is the residual standard error of the prediction: 

�̂�𝑛𝑒𝑤 ± 𝑡𝛼

2
,𝑛−𝑝−1

∙ √�̂�2(1 + 𝑥𝑛𝑒𝑤
𝑇 (𝑋𝑇𝑋)−1𝑥𝑡𝑒𝑥𝑡𝑛𝑒𝑤) 

By iterating through every going that has appeared in a course and calculating a prediction interval 

for each of them in a specific race, we can then see if the actual winning time of that race falls within 

these intervals, leaving us with the goings that could reasonably explain the actual winning time. 
Additionally, during this process, we store the predicted time that is closest to the actual time and log 

the going that generated the prediction for that time as “most likely.” This may be very important 

information for the decision making of stakeholders if multiple races in a day have a differing “most 
likely” going than than the reported one. 

4.3.  Check the model 

As we are using linear regression to estimate the winning time, it is necessary to check whether our 
model follows the Gauss-Markov assumptions. Here we will use Newmarket to demonstrate our model. 

 
(a) Residuals vs. Fitted Plot                                      (b) Error Distribution Plot 
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(c) Q-Q Plot                                               (d) Scale-Location Plot 

 
(e) Hat Value Plot                                                (f) Cook’s Distance Plot 

Figure 10.  Regression Diagnostics Checks for Gauss-Markov Assumptions of Linear Model after Log 

Transformation and Outliers Detection Specifically in Newmarket Racecourse 

Our Residuals vs. Fitted plot (Figure 10a) indicates that there is no systematic relationship between 

residuals and predicted values, thus the linearity assumption holds. For the assumption of normally 
distributed errors, the Error Distribution plot (Figure 10b) shows that the errors are roughly normally 

distributed, the Q-Q plot (Figure 10c) also shows that with 95% confidence, most observations fall 

around the straight line. Thus, there is no evidence to reject the normality assumption. We’ve previously 

explained how we are using the log transformation to solve the problem of heteroscedasticity, and the 
Scale-Location plot (Figure 10d) shows that our transformation is indeed potent. As for the assumption 

of independence of errors, despite logically there might be a tiny correlation between the goings of races 

in one day, it is not uncommon to have abrupt change of goings either. Moreover, since distance yards 
alone explains more than 96% of variance of the data already, it is reasonable to say such correlation in 

goings is neglectable. 

The Q-Q plot (Figure 10c) indicates that #2986 and #3869 have the largest positive residuals. #2236 
appears to have prominent hat values in the Hat Value plot (Figure 10e). It also has a high cook’s 

distance in Cook’s distance plot (Figure 10f), along with #1197 and #3143, indicating they are highly 

influential to our model. 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/131/2024.20543 

27 



 

 

 

Figure 11. Unusual observations 

After closer inspection on these unusual data, we find that the given going is mostly better than the 
predicted going, indicating that they are running slower than our prediction. Class and distance yards 

don't seem to explain such a long winning time, but other variables that are not considered in our model 

do. All these races are handicap races, thus the extra weight may result in the slow speed. Also, these 

races are mostly the last race of the day, thus we may expect unusual weather or previous races to affect 
the goings. As there are plenty of data and ruling them out won’t make the model anywhere worse, we 

decide to remove them from the history data of the Newmarket course. 

4.4.  Probability Table 
To find the probability of each going compared to the actual going based on the actual winning time and 

the predicted winning times, we used Bayesian Inference [15]. The Bayesian Theorem is a way of 

making statistical inferences in which the statistician assigns subjective probabilities to the distributions 
that could generate the data. First, we calculate the likelihood of the actual time given each going by 

using the probability density function of the normal distribution: 

𝑃(𝑇𝑎𝑐𝑡𝑢𝑎𝑙  | 𝑔𝑜𝑖𝑛𝑔𝑖) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑇𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
(𝐹𝑖𝑟𝑚)

)2

2𝜎2
) 

Second, we assign the 𝑃(𝑔𝑜𝑖𝑛𝑔𝑖) to be the prior probability of the i-th going condition. As the 
probability of each going is more correlated with the weather condition today instead of how frequently 

each going appears in the history, we set that 𝑃(𝑔𝑜𝑖𝑛𝑔𝑖) =
1

6
, as there are 6 goings in total. Finally, 

based on Bayes’ theorem, we calculated the posterior probabilities of each going given the actual 
winning time by dividing the product of likelihood and prior probability by the sum of all such products: 

𝑃(𝑔𝑜𝑖𝑛𝑔𝑖  | 𝑇𝑎𝑐𝑡𝑢𝑎𝑙) =
𝑃(𝑇𝑎𝑐𝑡𝑢𝑎𝑙  | 𝑔𝑜𝑖𝑛𝑔𝑖) ∙ 𝑃(𝑔𝑜𝑖𝑛𝑔𝑖)

𝑃(𝑇𝑎𝑐𝑡𝑢𝑎𝑙)
 

By following this approach, we ensure a formal and accurate determination of the posterior 

probabilities, which are crucial for further analysis and decision-making processes. 

5.  Results 

By looping through all the races after 2018, where there exists enough historical data to make the model 

function accurately, we make a table of all races after 2018 with additional columns to record our results. 

The probabilities of each going in one race from column Firm to column Heavy are calculated using the 
Bayesian theorem. The variable new_going provides the most likely outcome that our model predicts, 

while the variable reasonable_going stores all the previously defined reasonable outcomes. The column 

reasonable checks where the given going.f falls in our reasonable going list . We will use the idx column, 
which stores the index of each race based on the sequence of races on each date, for future studies. 

With our model, we check the number of unreasonable goings on each date. We observe that the 

majority of dates with misjudged goings only contain one or two unreasonable goings, which could 

potentially be isolated outliers. On the other hand, a date with three or more unreasonable goings may 
indicate a unique situation that contributes to the date's inaccurate goings. 
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(a) Catterick                         (b) Newmarket                 (c) Chester 

Figure 12. Histogram of Unreasonable Races by Date for (a) Catterick, (b) Newmarket and (c) Chester 

We chose June 30th, 2018 in Newmarket to gain a detailed understanding of why the reported goings 

on this date are largely unreasonable. The reported going is Good to Firm for all races, but the probability 
graph suggests that the original going on this date may be Good to Soft. However, from the third race 

onward, the going starts to deteriorate, suggesting the possibility of heavy rain before the third race. 

 

Figure 13. Probability of Different Going Conditions Over Race Index 

According to our model, 0.9432314 of the reported goings are reasonable in Catterick. For 

Newmarket and Chester, this ratio changes to 0.9413989 and 0.9312169, respectively. Given these 

surprisingly close ratios, one might naturally question whether there are any common factors 
contributing to the 6 –7% unreasonable goings.  

Distance is one possible factor. The longer the races are, the more influence the goings may have on 

them, potentially leading to more misjudgments. With such hypotheses, we are expecting to see the 
proportion of unreasonable goings increase with distance increases. 
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(a) Catterick                          (b) Newmarket                    (c) Chester 

Figure 14.  Proportion of Unreasonable Races by Distance for (a) Catterick, (b) Newmarket and (c) 

Chester 

However, the graph does not support such a hypothesis, particularly for Newmarket, where the trend 

seems to be the opposite of the other two courses.  

 
(a) Catterick                 (b) Newmarket                  (c) Chester     

Figure 15. Proportion of Unreasonable Races by Class for (a) Catterick, (b) Newmarket and (c) Chester  

There is no clear relationship between class and unreasonable goings either. Catterick, with fewer 

class 1 or class 2 races, exhibits a decreasing rate of unreasonable goings with lower class, while the 

class 1 and class 2 races in Newmarket appear to have fewer unreasonable goings. Chester, on the other 
hand, having nearly the same amount of class 2 and class 3 races, gets the highest unreasonable rate for 

class 2 and no unreasonable going for class 3. 
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(a) Catterick                  (b) Newmarket             (c) Chester 

Figure 16.  Proportion of Unreasonable Races by Race Index for  (a) Catterick, (b) Newmarket and (c) 

Chester  

We also assign each race an index based on the sequence of races on each day. According to the 

graph, the first one or two races of the day appear to have more unreasonable goings, whereas the races 

afterward have fewer. Only a handful of days across all courses will feature more than six races per day, 
and even though we observe an increase in the rate for the final few races, this could potentially stem 

from a scarcity of data. However, the higher initial rate may indicate that the results are based on 

predictions. The impending bad weather may lead the staff to report the going as worse than it actually 
is. 

6.  Conclusion and Future Research 

In conclusion, by building a linear model that predicts the winning time of each race using all possible 
goings, we can fairly assess whether the reported goings are reasonable and, if not, identify which goings 

are more likely to be the actual cases. As anticipated , the majority of reported outcomes are reasonable, 

although not necessarily precise. For those outcomes that are not reasonable, our probability graphs may 

also reveal potential factors contributing to the misreporting. Our model allows bettors to get more 
precise information on the track condition, resulting in better predictions throughout the day as more 

information about the day's goings is revealed every race. 

However, limitations still exist. In our current model, we are using a normal distribution to calculate 
the upper and lower bounds for the winning times and the probabilities of each going occurring. Since 

the residuals of our model are not in fact normal, but instead skewed to the right, there may be merit in 

instead using methods like kernel density estimation to obtain a proper historical distribution instead of 

using a normal distribution. 
Additionally, it is slightly suspicious that the relationship between winning time and distance of the 

race is linear. We would expect the times to be slightly exponential as horses should not be maintaining 

a constant speed throughout the races. It is more plausible for them to tire out in longer races and sprint 
in shorter ones.  

Also, our calculations did not take into account some special races that have a significant impact for 

finish time. Such as the handicap race in which judges assign different weights depending on the 
competition. Better horses carry heavier weights, which puts them at a disadvantage when competing 

against slower horses. This question could be solved if we take the weight of the horses into account, 

Proceedings of  the 2nd International  Conference on Machine Learning and Automation 
DOI:  10.54254/2755-2721/131/2024.20543 

31 



 

 

we can test whether the weight of each horse is linear with the finishing time. If so, we can add it to our 

linear model and solve the problem of special races. 

The final consideration that we believe to have some merit is in the many extraneous logical variables 
in the data that were excluded in this paper but were used to classify races. For example, there may be 

some specific interaction in novice races or amateur races slowing them down due to the inexperience 

of the jockeys and the horses. There may also be some other factors in seller races and auctions races, 
where horses are meant to be sold and shown off. In conclusion, there are many ways of creating a 

stronger and more accurate prediction model, including machine learning algorithms like Random 

Forest and others like Naive Bayesian and Neural Networks [16]. It would be worthwhile and interesting 

to see whether those prediction models centered around finding the winning horse could instead be 
fashioned to detect these inaccuracies in reported course conditions. 
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