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Abstract. Nowadays, about one-third of adults have the symptoms of insomnia. To assess these 

issues, one of the traditional methods used is polysomnography (PSG). However, it is expensive 

and not widely accessible, highlighting the urgent need for advancements in wearable technology 

to provide a more practical alternative for continuous sleep monitoring at home. This paper aims 

to explore various sleep assessment methods, including electrocardiography (ECG), 

photoplethysmography (PPG), and actigraphy, which measure heart activity, pulse wave, and 

muscle movement, respectively. By evaluating these methods, the paper analyses their 

advantages and challenges, particularly focusing on their accuracy in sleep stage classification 

and comfort levels. At the same time, this study compares Ear-EEG systems with other methods 

to assess their effectiveness in sleep monitoring. The future development directions for Ear-EEG 

in sleep monitoring are also discussed, encompassing aspects such as age variability, design 

improvements, and integrating advanced algorithms. Future advancements in at-home sleep 

assessments are expected to treat sleep disorders more efficiently and conveniently through early 

detection of disorders and improved user-friendliness compared to PSG. 
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1.  Introduction 

Sleep plays an essential part in our lives as we spend one-third of our time sleeping. Despite the growing 

recognition of the importance of sleep, the prevalence of sleep disorders such as insomnia was about 

30% [1]. The current gold standard in accessing sleep is polysomnography (PSG), providing a 

comprehensive evaluation. However, the need for a sleep technologist to set up the equipment and the 

discomfort associated with the sensors and wiring can negatively impact sleep quality [2], resulting in 

an inaccurate representation of the subject’s sleep and not being used in long-term sleep monitoring. 

Therefore, there is a growing need for at-home sleep assessment solutions that effectively detect 
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disorders in their early stages while being easy to use. In this review, we present an overview of the 

recent developments in wearable sensors and electronics and propose the advantages and limitations of 

each device in the application of sleep assessment. The new tool ear-EEG and the other devices are 

compared in terms of accuracy, comfort level, prices, and feasibility. Finally, we discuss these home-

use sleep monitoring systems' current challenges and future development. 

2.  Electrocardiogram (ECG) 

2.1.  Definition and functions 

An electrocardiogram (ECG) uses electrodes to record the heart's electrical activity. Figure 1 shows the 

three limb leads in an ECG created by placing electrodes on the right arm, left arm, and left leg. 

 

Figure 1. Placement of three limb leads (l, ll, lll), forming the Einthoven’s triangle. 

2.2.  Key studies 

One of the studies compared the accuracy of detecting Obstructive Sleep Apnea (OSA) (when sleep is 

interrupted by abnormal breathing) using an ECG against the gold standard PSG[3]. The study recruited 

205 adults with suspected OSA. The Apnea-Hypopnea Index (AHI) derived from the PSG recordings 

was used to diagnose and classify the severity of OSA. ECG recordings were taken simultaneously 

during the PSG study, and the cardiopulmonary coupling-derived respiratory event index (CPC-REI) 

was calculated. The CPC-REI was significantly correlated to the PCG-AHI (r=0.838, p<0.001). The 

accuracy of ECG in detecting OSA in moderate to severe cases was highly agreed with the manually 

scored AHI. 

Another study conducted introduces a Deep Convolutional Recurrent (DCR) model, integrating 

convolutional and recurrent neural networks for sleep stage scoring from a single-lead ECG signal, 

displayed in Figure 2C[4]. The convolutional layers capture local ECG patterns, and the recurrent layers 

capture temporal dependencies. The study utilised PSG recordings from 52 healthy and 60 OSA patients, 

shown in Figure 2A, with ECG signals collected as in Figure 2B. Finally, the DCR model was evaluated 

using PSG data, achieving accuracies of 86.4% for three-class and 74.2% for five-class sleep staging, 

classified in Figure 2D. 
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Figure 2. (A) study participants and setup of PSG (B) ECG dataset (C) DCR model (D)three-class and 

five-class sleep staging. 

2.3.  Advantages and limitations 

Since ECG provides heart rate variability (HRV) data, the autonomic nervous system activity can be 

indicated, and different sleep stages can be classified. However, ECG signals exhibit the characteristics 

of non-linear and non-stationary noises, making signal processing challenging as the signals vary over 

time and can be altered by external factors [3]. 

3.  Photoplethysmography (PPG) 

3.1.  Definition and function 

Photoplethysmography (PPG) is an optical technique that measures blood volume changes in the skin 

related to cardiac activity, allowing indirect monitoring of heart rate and heart rate variability (HRV) 

[5]. Its process is shown in Figure 3. Initially, denoising is processed to minimize interference to the 

signal. Following this, different peak detection algorithms will be used to identify feature points. The 

feature extraction phase transforms the signal into time, frequency, and non-linear domains for feature 

extraction. PPG is now widely used in medical devices for physiological monitoring and consumer 

wearables for health tracking and sleep monitoring. 

 

Figure 3. Working process overview of PPG. 

3.2.  Key studies 

In one of the studies [6], researchers evaluated a way to detect sleeping disorders; this experiment 

evaluated the possibility and reliability of using finger PPG to detect central sleep apnea (CSA). The 
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experiment included 266 patients with suspected sleep apnea (SA), who may have obstructive sleep 

apnea (OSA), central sleep apnea (CSA), or both. To verify the utility of PPG in detecting CSA, 

researchers conducted laboratory polysomnography (PSG) and PPG data collection for each patient 

simultaneously. In the outcome evaluation phase, sensitivity, specificity, accuracy, and Cohen's Kappa 

were calculated at different Central apnea hypopnea Index (CAHI) cut-off values (5, 10, and 15). At a 

cAHI cut-off value of 10, the method achieved high sensitivity and specificity, showing excellent 

performance. In summary, this experiment proposes a novel approach for detecting CSA by using non-

invasive finger PPG signals to aid sleep apnea diagnosis and treatment. 

3.3.  Advantages and limitation 

The PPG technique combines several advantages, such as non-invasive monitoring, convenience, real-

time monitoring, and a wide range of application occasions. Due to its portability and micro size, it can 

provide real-time health feedback, and it’s easy to integrate the data into the device. However, the 

accuracy of PSG still needs to be improved. 

4.  Actigraphy 

4.1.  Definition and function 

Actigraphy uses wristwatch-like devices to detect sleep-wake patterns by recording body movements. 

It is widely used for the diagnosis of sleep-related disorders [7]. Its working process is shown in figure 

4. 

 

Figure 4. Working process overview of actigraphy. 

Actigraphy gains data on sleep-wake patterns by recording body motion. Then, through data 

preprocessing and analysis, we get information on some parameter calculations: time in bed (TIB), total 

sleep time (TST), sleep efficiency (SE), sleep latency (SL), and wake after sleep onset (WASO). 

4.2.  Key studies 

Accuracy of actigraphy was established by many studies from different regions and including subjects 

with varying age ranges, such as the Study of Women’s Health Across the Nation. (𝑛 = 323, aged 48–

57 years) [8]. Information gained from PSG and wrist actigraphy was collected simultaneously in 

participants’ homes over three nights. Multivariable repeated-measures linear models were employed to 

compare TST, SE, SL, and WASO across different measurement methods. According to the data, 

actigraphy and PSG (the gold standard) produced similar estimates of sleep duration (TIB, TST) and 

efficiency (SE, SL, WASO). 

Another study (𝑛 = 22, aged 23.9 (± 3.8) years) shows a similar conclusion, in which two nights of 

sleep were recorded at the same time with polysomnography (PSG), two activity monitors (actigraphy) 

and a partial-PSG system [9]. Agreement with PSG was assessed per-epoch basis and through summary 

metrics, including TST and WASO. According to the data, all devices demonstrated high relative 
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accuracy for identifying sleep-wake patterns. Still, the partial-PSG system was the highest, with an 

agreement of 91.6 %, while the actigraphy shows a medium threshold of 87.7 %.  

4.3.  Advantages and limitations  

According to previous research, actigraphy's comfort level and accuracy are relatively high [10,8]. 

However, it can only detect sleep-wake patterns, which leads to limited derivable information. For 

example, actigraphy has not been validated for measuring sleep stages, and results from limited 

experiments show that the accuracy is both low and unstable [11,12]. In addition, the accuracy is still 

expected to improve compared to the gold standard PSG.  

5.  Ear-EEG 

5.1.  In Ear-EEG: Generic and Custom-designed 

In-ear electroencephalography (EEG) uses electrodes in the ear canal for long-term monitoring, 

especially during sleep, to study brain activity, detect sleep disorders, and understand sleep stages. 

Generic ear-EEG devices, made from flexible materials to fit various ear shapes and sizes, are designed 

for convenience and broad usability, though they may sacrifice signal quality. In contrast, custom ear-

EEG devices are molded to an individual's ear for superior fit and signal quality, making them ideal for 

precise medical diagnostics and advanced research where accuracy is crucial. 

5.2.  In Ear-EEG Key Studies 

 

Figure 5. Flowchart of the study design and critical steps for generic and custom-designed ear-EEG. 

[13]. 

The study is shown in Fig. 5. involved ten healthy subjects in two parts. Part A included two nights of 

recordings using Ear-EEG and polysomnography (PSG) to assess sleep stage classification and comfort, 

with PSG as the reference. Part B involved ten nights of recordings using only Ear-EEG. Data was 

collected at home, processed, and analyzed using a random forest classifier, with Cohen's kappa 

measuring agreement between classifier output and PSG scoring. Additionally, the study compared 

custom-designed Ear-EEG with actigraphy in 20 subjects over 80 recordings. The comparison focused 

on Cohen's kappa values, showing that Ear-EEG had higher accuracy in sleep stage classification than 

actigraphy.  
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5.3.  Around Ear-EEG Key Studies 

 

Figure 6. Flowchart of the study [14].  

Fifteen participants were used by cEEGrid and PSG systems for overnight data recording and 

comparison.  

A study in Fig. 6 involved fifteen subjects (six males, average age 35.3 years) comparing sleep EEG 

recordings between cEEGrid and standard PSG systems. The PSG used six scalp electrodes with ECG, 

EOG, and EMG, recording at 128 Hz, while the cEEGrid had ten electrodes behind the ear, recording at 

250 Hz via Bluetooth [14]. 

Participants underwent health checks, were fitted with both systems and recorded data overnight. 

Average recording times were 11 hours 47 minutes for PSG and 11 hours 10 minutes for cEEGrid. The 

kappa statistic for sleep stage agreement was moderate (0.42), with better agreement in wake/sleep states 

(kappa 0.55). Bland-Altman analysis showed good agreement for nine 13 sleep parameters but noted 

differences in N2, N3, and sleep onset latency. Overall, the cEEGrid had a 58.5% agreement in sleep 

phase classification, indicating it can recognize sleep stages but needs improvement to match PSG 

accuracy.  

A study in Fig. 7 evaluated a flexible printed ear-EEG sensor (cEEGrid) for home sleep monitoring 

with ten participants (eight women, two men, mean age 28.4 years). Each provided one night of sleep 

data using the cEEGrid and a portable amplifier. Additional electrodes were placed at Fpz, EOG_L, and 

EOG_R. Signals were recorded wirelessly at 250 Hz, then pre-processed with channel selection, 

bandpass filtering (0.5-40 Hz), and down-sampling to 125 Hz. Experts labeled 30-second segments 

using Fpz+EOG, cEEGrid, and cEEGrid+EOG per AASM guidelines. Cohen's kappa showed 0.67 for 

cEEGrid alone and 0.75 with EOG, indicating good consistency with PSG. Retest reliability for 

Fpz+EOG was 0.78. The study concluded that cEEGrid effectively monitors sleep stages at home, with 

improved accuracy when EOG channels are included, supporting its potential for diagnosing sleep 

disorders. 
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Figure 7. The study design in [15]. 

The study includes Frontal Pole Zero (Fpz), EOG_L, EOG_R, and R1-R8 electrodes positioned 

behind the ear and a system that transmits data wirelessly to a smartphone via Bluetooth. 

Table 1. Comparisons for sleep monitoring devices regarding accuracy distinguish five sleep stages: 

comfort level, price, and annual usage. 

Devices   

Accuracy compared to PSG/% 

(Five sleep stages: N1, N2, N3, 

REM and wake)   

Comfort 

Level 
Price/$    

Annual Usage 

/Million 

ECG   74.2 [4]  Low   200-500   300-400  

PPG   59.3   High   100-500   400-500 

Actigraphy   
Not necessarily capable of five-

class sleep staging [11] 
High [10]    100-300   20-50   

Around Ear-

EEG: cEEGrid 
58.5   Medium   200-400   

Not typically 

adopted in 

public 

In Ear-EEG   89 [16]   High [13]  

Generic:  

400-600 

Custom- 

designed: 700-

1000   

Generic: 300-

400 

 Custom-      

designed: 

  100-200   

6.  Results  

As shown in Table 1, ear-EEG has the highest accuracy compared to polysomnography (PSG) at 89%, 

indicating its potential for recognizing five sleep stages. Conversely, PPG and Around Ear-EEG exhibit 

lower accuracy rates of 59.3% and 58.5%, respectively. For custom-designed ear-EEG, the price is 700-

1000, which is relatively high compared with other devices. Actigraphy only distinguishes between 

sleep and wake states, lacking the granularity needed for detailed sleep stage analysis. PPG and In Ear-

EEG are rated as highly comfortable, making them more suitable for long-term use. ECG is noted for 

its low comfort level, which might limit its feasibility for some users. 

7.  Conclusion 

The medium comfort rating of Around Ear-EEG indicates a balance between usability and invasiveness. 

While higher accuracy and comfort often come with increased costs, as seen with custom-designed Ear-

EEG, the choice of sleep monitoring method should be tailored to individual needs, balancing accuracy, 

comfort, and cost. PPG is widely used for its high comfort, while the more accurate but expensive In 

Ear-EEG is less utilized. Future research should aim to improve noninvasive, comfortable methods for 

broader accessibility and user-friendliness. Additionally, studies should include a wider age range to 
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ensure generalizability [12], especially given the differing sleep patterns of children and the elderly. 

Enhancing accuracy in determining sleep stages, mainly N1 is also crucial. In summary, the future of 

sleep monitoring research lies in addressing these limitations by including a broader age range in studies 

and improving the accuracy of sleep stage determination. These advancements will provide more 

reliable, personalized sleep monitoring solutions and effectively detect sleep disorders. 
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