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Abstract: Based on a foundation pit project in Shenyang, a large number of water level 

detection data were collected. The research focus of this paper is to use these data to build a 

depth neural network model to predict the water level of foundation pit dewatering. The 

Spatio-temporal convolution neural network has two components for capturing temporal 

correlation and spatial correlation of nodes, which have strong capturing ability of spatio-

temporal correlation. The construction of spatio-temporal convolution neural network model 

can realize the time domain prediction of water level at all measuring points at the same time. 

The Kriging interpolation model optimized by Dupuit dewatering formula is superior in the 

spatial prediction of dewatering water level in the whole study area. Compared with OK 

method, IDW method and SP method, the prediction performance of improved Kriging 

interpolation is improved by 33.02%, 38.26% and 44.96% respectively Based on STGCN-

Kriging model, the average error is 0.71 m and the error percentage is 2.55%. Combining 

with STGCN network and improved Kriging interpolation, the discrete prediction results in 

time domain are mapped to the spatial distribution results of water level buried depth in time 

domain, and the spatial distribution of foundation pit dewatering water level is predicted in 

time domain. 
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1. Introduction 

In recent years, with the rapid development of the national economy, the scale of the city continues 

to expand, more and more high-rise buildings and urban subway construction, deep foundation pit 

engineering has become an indispensable part. In particular, the city is rich in groundwater resources, 

which must be affected by groundwater during the excavation of foundation pits. Groundwater is 

buried deep underground, and there are many influencing factors, which causes great trouble to the 

study of groundwater dynamics [1].  

At present, the prediction of groundwater level mainly includes traditional theoretical methods 

[2,3], numerical simulation methods [4,5] and artificial intelligence methods [6,7]. The better 

prediction effect is to use historical water level to establish a combined prediction model through 

statistics and neural network [8]. Neural network algorithms, such as ANN [9], ANFIS [10], GP [11], 

LSTM [12] and STGCN [13], do not require various physical parameters. These algorithm models 

are widely used in groundwater prediction research. 
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There are a large number of on-site monitoring data for us to excavate in the foundation pit project. 

The feedback of monitoring data is conducive to grasping the dynamic changes of water level in the 

foundation pit area in real time, adjusting the deployment of dewatering projects, and ensuring the 

safety of foundation pit excavation. In this paper, based on the field monitoring data of a subway 

dewatering project in Shenyang, the time domain prediction of foundation pit dewatering water level 

based on STGCN network, the spatial prediction of foundation pit dewatering water level based on 

Kriging interpolation optimized by Dupuit dewatering formula, and the spatio-temporal prediction of 

foundation pit dewatering water level based on STGCN and improved Kriging are modeled and 

analyzed. 

2. Data preprocessing and distribution characteristics 

2.1. The temporal distribution characteristics of groundwater depth in the study area 

The water level change curve of 182 periods in 6 monitoring wells around the foundation pit is shown 

in Fig.1. The results of each monitoring sequence show that the water level change in the study area 

as a whole shows a trend from sharp to slow, and then with the increase of precipitation wells, the 

water level drops faster, the water level changes intensified, and finally the groundwater recharge and 

discharge reached a relative balance, and the water level gradually stabilized. 

 

Figure 1: Water level change of monitoring Wells in stage 182 

2.2. Spatial distribution characteristics of groundwater depth in the study area 

Similar to the time distribution characteristics, under the action of group wells, the water level 

distribution in the surrounding area of the foundation pit also has certain spatial characteristics. Here, 

the foundation pit is divided into the following 8 areas, as shown in Figure 2.The box line statistics 

of 48 wells in the study area for 50 periods of data at the same time period are shown in Figure 3.It 

can be seen from the figure that the spatial distribution of groundwater level depth fluctuates around 

the edge of the foundation pit 

.  

Figure 2: Schematic diagram of foundation      Figure 3: Monitoring data box diagram of 48  

pit area division                           Wells 
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2.3. Error evaluation index 

Because the water level prediction problem is a typical nonlinear regression problem, the evaluation 

indexes of mean absolute error ( MAE ), root mean square error ( RMSE ) and mean absolute 

percentage error ( MAPE ) are selected to evaluate the regression effect. 

3. Research methods 

3.1. Time-domain prediction of foundation pit dewatering water level based on STGCN 

network 

(1)Spatio-temporal convolution block captures the spatio-temporal characteristics of sequence. 

The spatiotemporal convolution block captures the temporal characteristics of water level depth 

through the gated convolution layer, and captures the spatial characteristics of water level depth 

through the spatial map convolution layer. The spatio-temporal convolution block ( ST-Conv block ) 

is shown in Figure 4.  

 

Figure 4: Schematic diagram of spatiotemporal convolution block 

(2) The overall framework of STGCN model 

By constructing the spatio-temporal sequence data of each logging into a sequence diagram 

structure data with spatio-temporal attributes, the monitoring information is arranged according to 

the time series, so that the monitoring information becomes a dynamic time series signal, as shown 

in Fig.5.The STGCN water level prediction model can simultaneously predict the water level changes 

of all measuring points in the group well dewatering system, which greatly improves the practicability 

of the actual water level prediction task. The STGCN network structure is shown in Figure 6. 

         
(a) Network structure of some wells on the east side of the foundation pit (b) Study the network 

structure of all wells in the research area 

Figure 5: Network structure of sequential group Wells 
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Figure 6: Flowchart of STGCN network structure 

3.2. Analysis of dewatering mechanism of foundation pit group wells 

(1) Dupuit stable well flow model 

The Dupuit stable well flow model makes the following assumptions on the soil layer information 

in the group well precipitation area : 

①The thickness of each aquifer in the precipitation area is consistent, isotropic and homogeneous, 

and the floor of the aquiclude is horizontal and has no lateral deformation in the horizontal direction. 

②Compared with the influence range of precipitation, the influence of the radius of precipitation 

well is negligible. 

③There is no vertical seepage supply and evaporation discharge ; 

④The groundwater seepage conforms to Darcy 's law. 

(2) Well group superposition theory 

When multiple dewatering wells in the same aquifer are dewatering at the same time, the water 

level change of any well in the well group is usually composed of two parts : one is the water level 

change caused by the pumping of the well itself ; the other part is the water level change caused by 

the working of other wells in the well group system at the location of the well. This effect is called 

the interference well group effec. 

3.3. Spatial prediction of foundation pit dewatering water level based on Kriging 

interpolation 

(1) The basic principle of Kriging interpolation  

Kriging interpolation needs to meet the two constraints of linear unbiased estimation and minimum 

variance expectation. 

①Linear unbiased estimation refers to the mathematical expectation of the difference between the 

true value 𝑍(𝑥0) and the estimated value 𝑍∗(𝑥0) of any point 𝑥0 to be interpolated is 0, that is, 

the following equation : 

𝐸 [𝑍∗ (𝑥0) − 𝑍 (𝑥0)] = 0 (1) 

②The minimum estimated variance means that the variance of the true value 𝑍(𝑥0) and the 

estimated value 𝑍∗(𝑥0) of all the interpolation points 𝑥0 is the smallest, that is, satisfies the formula 

16. 

𝐽 = 𝑚𝑖𝑛(𝑉𝑎𝑟[𝑍∗(𝑥0) − 𝑍(𝑥0)]) (2) 
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(2) Dupuit optimization Kriging interpolation semi-variance function 

According to the basic principle of Kriging interpolation, the core equation of Kriging 

interpolation method is: 

𝑍∗(𝑥0) = ∑  

𝑛

𝑖=1

𝜆𝑖 𝑍(𝑥𝑖) (3) 

From the solution matrix of the weight coefficient 𝜆𝑖 in Equation 17, it can be seen that the 𝜆𝑖 

value is related to the semi-variance function 𝑦𝑖𝑗  and the equivalent form of the semi-variance 

function is : 

𝑟𝑖𝑗 = 𝐸[(𝑧𝑖 − 𝑧𝑗)2]/2 (4) 

It is more scientific to use the Dupuit precipitation formula that considers more influencing factors 

to fit a semi variance function 𝛾 = 𝛾(𝑑, 𝐻0, 𝑄, 𝑘, 𝑅) instead of a semi variance fitting function 𝑦 =
𝑦(𝑑) that only considers distance effects. 

4. Results analysis 

The STGCN network simultaneously predicts all measuring points. Figure 7 below shows the 

comparison between the predicted results of 42 precipitation wells and 6 monitoring wells in the study 

area predicted by the STGCN model and the actual monitoring results. The average error of the 

prediction results of the STGCN model at the monitoring well is 0.34 m, and the average error 

percentage is 1.17 %. The average error of the prediction results at the precipitation well is 0.30 m, 

and the average error percentage is 1.05.      

    

Figure 7: Comparison curves of all Wells predicted and measured  

In the position of 6 monitoring wells, the average error of OK method is 1.06 m, and the error 

percentage is 3.79 %. The average error of IDW method is 1.15 m, and the error percentage is 3.64 

%. The average error of the  SP method is 1.29 m, and the error percentage is 4.64 %. In terms of 

interpolation prediction performance, the improved Kriging interpolation method proposed in this 
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paper increases by 33.02 %, 38.26 % and 44.96 % respectively. The above performance evaluation 

indicators are quantified as shown in Figure 8. 

 

Figure 8: Comparison of accuracy evaluation indexes of four interpolation methods  

According to the above research, the prediction results of the water level distribution in the study 

area based on the STGCN-Kriging interpolation prediction method are in good agreement with the 

actual distribution of the water level in reality. For example, see Figure 9 below. 

           
(a)Interpolation prediction results at DSW-8 logging site (b)Interpolation prediction results at DSW-

9 logging site 

             
(c)Interpolation prediction results at DSW-10 logging site (d)Interpolation prediction results at DSW-

11 logging site 

             
(e)Interpolation prediction results at DSW-12 logging site (f)Interpolation prediction results at DSW-

13 logging site 

Figure 9: Comparison between STGCN-kriging prediction interpolation and actual situation 

It can be seen from the diagram that the STGCN-Kriging interpolation prediction curve always 

fluctuates around the monitoring curve. The average error of the interpolation prediction results is 

0.79 m, and the relative error percentage is 2.79 %. The STGCN-Kriging spatio-temporal prediction 
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is carried out for the whole region. On the whole, it provides valuable water level information for the 

area not covered by measuring points, and provides continuous water level distribution map in time 

and space for the whole observation area.  

5. Conclusion 

The deep learning method and Dupuit group well precipitation formula are introduced to optimize 

the neglect of spatial-temporal correlation in Kriging interpolation, and an improved Kriging 

interpolation method is proposed to predict the spatial domain of water level. Finally, the STGCN 

network is combined with the improved Kriging interpolation method to propose a prediction model 

that can predict the spatial and temporal distribution of water level in time-space domain. The main 

conclusions are as follows : 

(1)The groundwater depth in the study area showed a trend of ' acute-slow-acute-slow-stable ' in 

the time distribution. In the spatial distribution, the water level on the north and south sides of the 

long side of the foundation pit decreases greatly, and the water level on the east and west sides of the 

short side decreases slightly. 

(2)The STGCN network model is built, and the characteristics of the graph convolution network 

and the gated convolution network are used to predict all the measuring points at the same time. The 

prediction efficiency is better than the model that predicts each measuring point one by one.  

(3)The semi-variance function in Kriging interpolation is optimized by combining deep learning 

algorithm and Dupuit precipitation formula, which is more in line with the actual change law of 

groundwater.  
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