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Abstract: The Metropolis-Hastings algorithm is a well-proven Markov Chain Monte Carlo 
(MCMC) technique for generating sequences of random samples from probability 
distributions difficult to sample directly. In this article, we develop two versions of the 
Metropolis-Hastings algorithm — Independent Metropolis and Random-Walk Metropolis — 
and integrate them with a zero-inflated Poisson model to calculate the percentage of children 
among widowed women in Manchester, 2021. The excess of zeros in the data are estimated 
using a zero-inflated Poisson distribution. So we calculate both Metropolis-Hastings 
algorithms for estimation of the parameters of the model such as the Poisson rate parameter 
and the zero-inflation parameter. Using these algorithms we have shown that the zero-inflated 
Poisson model estimates are quite consistent with observed data and hence useful for 
modelling count data with excess zeros. These observations indicate that Independent 
Metropolis and Random-Walk Metropolis methods both fit the model parameters correctly, 
with Random-Walk Metropolis resulting in stable convergence.  

Keywords: Metropolis-Hastings algorithm, Independent Metropolis, Random-walk 
Metropolis, Markov Chain Monte Carlo, zero-inflated Poisson model 

1. Introduction 

The Markov Chain Monte Carlo (MCMC) method named by American physicist Metropolis et al [1, 
2] was developed and proposed during the “Manhattan Project” to create the atomic bomb. Canadian 
statistician Hastings [3] and his Ph.D. student Peskun [4] overcame the dimensional bottleneck 
problem encountered by conventional Monte Carlo methods. They generalized the Metropolis 
algorithm and extended it as a statistical simulation tool, forming the Metropolis-Hastings algorithm. 

Compared with the Metropolis method, the Metropolis-Hastings algorithm s a statistical 
simulation tool looks more professional. What is important is that the symmetrical proposal 
distribution function in Metropolis-Hastings algorithm is not necessary, so it is more flexible and 
convenient to apply [5, 6, 7]. 
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2. Ease 

2.1. Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm is one of the most popular MCMC methods and is utilized to 
simulate a sequence of random samples, a Markov chain converging to a stationary target distribution 
𝜋(∙), which is difficult to sample directly. Let 𝑞(𝑥!"#|𝑥!) denote the proposal probability that moves 
from 𝑥!	at time t to 𝑥!"# at time t+1. The proposed distribution can facilitate the simulation of a 
Markov chain corresponding to the target distribution. The algorithm is implemented in the following 
steps: 

Step 1: Initialize the current state 𝑥!; 
Step 2: Generate a candidate 𝑥!"#∗  value from the proposal distribution 𝑞(𝑥!"#∗ |𝑥!); 
Step 3: Calculate the acceptance probability 𝛼!(𝑥! , 𝑥!"#∗ ):  

 𝛼!(𝑥! , 𝑥!"#∗ ) = 𝑚𝑖𝑛 /%('!"#
∗ ))('!|'!"#

∗ )
%('!))+'!"#∗ |'!,

, 11 (1) 

Step 4: Generate 𝑢! from a uniform distribution on [0, 1]; 
Step 5: If 𝑢! ≤ 𝑎! , accept the candidate value 𝑥!"#∗  and set 𝑥!"# = 𝑥!"#∗ ; otherwise, reject the 

candidate value 𝑥!"#∗  and set 𝑥!"# = 𝑥!; 
Step 6: Repeat Step 2 to Step 5 until a sample of the desired size N is obtained. 
Based on the choice of the proposal distribution, the Independent Metropolis algorithm and 

Random-walk Metropolis algorithm (RWM) are two typical Metropolis-Hastings algorithms [8].  

2.1.1. Independent Metropolis algorithm 

In this case, the candidate value 𝑥!"#∗  is independent of the current state 𝑥!, which is formed as 
𝑞(𝑥!"#∗ |𝑥!) = 𝑞(𝑥!), 
The acceptance probability 𝛼!(𝑥! , 𝑥!"#∗ ) is then modified to 

 𝛼!(𝑥! , 𝑥!"#∗ ) = 𝑚𝑖𝑛 /%('!"#
∗ ))('!)

%('!))+'!"#∗ ,
, 11 (2) 

2.1.2. Random-walk Metropolis algorithm 

The critical feature of RWM is that the candidate value 𝑥!"#∗  is centered distributedly on the current 
state 𝑥!, i.e.  
𝑥!"#∗ = 𝑥! + ò, 

where ò is distributed symmetrically with mean zero. For example, the proposal value 𝑥!"#∗  given 𝑥! 
is simulated from a normal distribution 𝑥!"#∗ |𝑥!~𝑁(𝑥! , 𝜎-). Therefore, the acceptance probability 
𝛼!(𝑥! , 𝑥!"#∗ ) is simplified to 

 𝛼!(𝑥! , 𝑥!"#∗ ) = 𝑚𝑖𝑛 ;%('!"#
∗ )

%('!)
, 1< (3) 

2.2. Application 

2.2.1. Data and Model 

In this paper, we study the number of widowed women with different number of children in 
Manchester, 2021, the data of which is shown in Table 1 and Figure 1. 
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Table 1: The numbers of widows with different number of children 

Children Widows 
0 52 
1 10 
2 25 
3 8 
4 7 
5 3 
6 0 

 
Figure 1: Histogram for the numbers of widows 

We use a zero-inflated Poisson model based on the distribution in Figure 1. Let Y be the number 
of children per widowed woman. The data 𝑦#, 𝑦-, … , 𝑦. are the observations corresponding to Table 
1 [9], where n is the total number of widows and assumed independent and identically distributed 
from the following probability mass function: 

 𝑓(𝑦|𝜆, 𝜀) = B
𝜀 + (1 − 𝜀)𝑒/0											𝑦 = 0

(1 − 𝜀) 0
%1&'

2!
														𝑦 = 1,2, … , 𝑛

 (4) 

To predict the number of widows with different numbers of children using the zero-inflated 
Poisson distribution, we first estimate the values of 𝜆  and	 𝜀  through the Metropolis-Hastings 
algorithms. 

For simplicity, assume that both 𝜆 and 𝜀 have uniform priors. Thus, the posterior distribution for 
(𝜆, 𝜀) is proportional to the following form:  

 𝑓(𝜆, 𝜀|𝑦) ∝ ∏  .
45# 𝑓(𝑦4|𝜆, 𝜀) (5) 

Therefore, we obtain the target distribution of (𝜆, 𝜀):  

 𝜋(𝜆, 𝜀) = ∏  .
45# 𝑓(𝑦4|𝜆, 𝜀) (6) 

Based on the properties of zero-inflated Poisson distribution and the observed data, we initialize 
the value of 𝜆 and 𝜀 as follows: 

𝜀̂ = 𝑓(0) =
52
𝑛 = 0.4952; 

 𝜆P = 𝑦/(1 − 𝜀	̂	) = 2.3962, 𝑎𝑠	𝐸𝑌 = 𝜆(1 − 𝜀) (7) 

Subsequently, we shall produce sequences of 𝜆 and 𝜀 simulation with a sample size N=10000 by 
two different algorithms. 
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2.2.2. Independent Metropolis 

 
Figure 2: Independent Metropolis 

According to the posterior distribution, we assume 𝜆~𝐺𝑎𝑚𝑚𝑎(𝛼#, 𝛽#) and 𝜀~𝐵𝑒𝑡𝑎(𝛼-, 𝛽-) to be 
proposal distributions for 𝜆	and 𝜀, respectively. Thus, we have proposal probability 𝑞#(𝜆) and 𝑞-(𝜀): 

 𝑞#(𝜆) =
6#
(#

7(8#)
𝜆8#/#𝑒/6#0 (8) 

 𝑞-(𝜀) =
#
9
𝜀8)/#(1 − 𝜀)6)/# (9) 

In this case, the acceptance probability 𝛼!{(𝜆! , 𝜀!), (𝜆!"#∗ , 𝜀!"#∗ )} is 

 𝛼! = 𝑚𝑖𝑛 /%(0!"#
∗ ,;!"#

∗ )
%(0!,;!)

⋅ )#(0!)
)#+0!"#∗ ,

⋅ ))(;!)
))+;!"#∗ ,

, 11 (10) 

To confirm a specific distribution, we need to choose reasonable parameters α#, β#, α-, β- in the 
proposal probabilities q#(λ) and q-(ϵ). The key point in this selection is to ensure that the proposal 
distributions for λ and ϵ are both close to the posterior distribution and exhibit greater dispersion than 
the posterior distribution [10]. 

For example, q#(λ) ∼ N(α#, β#-)  and q-(ϵ) ∼ N(α-, β--)  are possible choices. Figure 2(a) and 
Figure 2(b) show the trace plots for the simulations of λ and ϵ, respectively. Both trace plots in Figure 
2 illustrate stationary Markov chains that move quickly, indicating that the algorithm performs 
effectively. Additionally, the comparison between the proposal and posterior distributions for λ and 
ϵ  in Figures 2(c) and 2(d) demonstrates that the proposals not only have means similar to the 
posteriors but also exhibit greater dispersion than the posterior distributions. These characteristics 
confirm that the chosen parameters for the proposal distributions are appropriate and contribute to the 
effectiveness of the algorithm. 

2.2.3. Random-walk Metropolis 

Based on the RWM algorithm, Normal proposal distribution is assumed for both 𝜆 and 𝜀. Therefore, 
we propose to sample 𝜀∗~𝑁(𝜀, 𝜎;-)  and 𝜆∗~𝑁(𝜆, 𝜎0-) , where 𝜎;-  and 𝜎0-  represent the proposed 
variances for 𝜆 and 𝜀, respectively. In this case, the acceptance probability is 
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 𝛼! = 𝑚𝑖𝑛 ;%(0!"#
∗ ,;!"#

∗ )
%(0!,;!)

, 1< (11) 

Then tuning 𝜎;- and 𝜎0- is able to optimize the performance of the algorithm. We choose (𝜎0-, 𝜎;-) 
in different values (0.001, 0.0001), (0.2, 0.02), (2, 0.2), and all the implements of the first 1000 
samples are shown in the Figure 3.    

For the case e𝜎0-, 𝜎;-f = (0.001, 0.0001) , most candidate values of 𝜆  and 𝜀  are accepted.  
However, the move in each step is very small. Thus it takes a long time for the Markov chains of 𝜆 
and 𝜀 to explore and they do not converge to posterior distributions.	e𝜎0-, 𝜎;-f = (0.2, 0.02) is the 
other extreme case, where few candidate values of 𝜆 and 𝜀 in the moving are accepted.  For the case 
e𝜎0-, 𝜎;-f = (0.2, 0.02), the traceplots show that both Markov chains move fast and appear to be 
converged and therefore, it is the optimal choice for the RWM algorithm. 

2.2.4. Result and Analysis 

 
Figure 3: Random-walk Metropolis 

Based on the samples of size N=10000 for 𝜆 and 𝜀 from two algorithms, we estimate the numbers of 
widows with different children in Manchester from the zero-inflated Poisson model using Monte-
Carlo method. The results are summarized in Table 2 and shown in Figure 3 and Figure 4. 

Table 2: Result 

Children Widows (Observed) Widows (Ind) Widows (RWM) 
0 52 51.76 51.8 
1 10 15.4 15.38 
2 25 16.32 16.31 
3 8 11.53 11.52 
4 7 6.11 6.11 
5 3 2.59 2.59 
6 0 0.92 0.91 
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Figure 4: Comparison of result 

We observe that both Independent Metropolis and RWM have good agreement on the numbers of 
widowed women with different numbers of children. Comparing with the observations, both 
algorithms provide accurate estimations for the number of widows with 0, 4, 5, and 6 children.  
However, there are large differences between the expected numbers and observations for cases that 
widowed women have 1, 2, 3 children. 

3. Conclusion 

In this paper, two variations of the Metropolis-Hastings algorithm—the Independent Metropolis and 
the Random-Walk Metropolis (RWM)—were applied to a zero-inflated Poisson model to estimate 
the distribution of widows with different numbers of children in Manchester. By adjusting the 
parameters within the algorithms, reasonable samples of the zero-inflated Poisson model parameters 
π and λ were obtained. 

When comparing the predicted values (obtained from the model using the estimated parameters) 
with the observed values (actual data from Manchester), the model demonstrates a generally good fit. 
However, there is a noticeable gap between the predicted values and the observed values in specific 
cases, particularly for widows with 1, 2, or 3 children. This suggests that while the model performs 
adequately overall, the true distribution of the data may not be fully captured by the zero-inflated 
Poisson model. 

To address these discrepancies, future studies could consider exploring alternative models, such 
as the Negative Binomial Zero-Inflated model, which may better account for overdispersion in the 
data and provide an improved fit to the observed values. 
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