

Optimization Strategies for Low-Power AI Models on
Embedded Devices

Tianqi Zhen1,a,*

1Washington State University, School of Electrical Engineering & Computer Science, Pullman, WA,

99163, United States

a. tianqi.zhen@wsu.edu

*corresponding author

Abstract: With the growing demand for IoT devices, developing low-power AI models on

embedded systems has become increasingly important. However, the efficient

implementation of AI models within the computational and battery limitations of these

devices remains a significant challenge. This study addresses how model pruning and

quantization compression techniques can reduce power consumption without significantly

compromising model accuracy. The research method optimizes the performance of the three-

color recognition model, organizes a dataset consisting of red, yellow, and green

classification images, and pre-processes them to standardize the resolution and format. The

research object is to use pruning and quantization techniques in combination to optimize

memory and computational efficiency further. Experimental evaluation was performed on an

Arduino Nano 32 with a camera model, TensorFlow Lite for Microcontrollers for deployment,

and a power measurement tool to record energy consumption. The results demonstrate that

these methods significantly reduce energy consumption while maintaining acceptable

accuracy for real-time applications. This study provides practical optimization strategies for

deploying TinyML on resource-constrained devices, offering valuable insights for low-power

AI development in IoT and edge computing applications.

Keywords: TinyML, ultra-low-power, model optimization, quantization, pruning

1. Introduction

With the advent of Tiny Machine Learning, deploying optimized ML models on constrained battery-

less Internet of Things (IoT) devices with minimal energy availability has become increasingly

viable[1]. However, achieving real-time performance for tasks such as image recognition remains a

significant challenge due to limited computational power and battery life. Current research in the field

has explored various optimization techniques, such as pruning and quantization, to address these

limitations. While these methods have demonstrated success in reducing power consumption and

model size, challenges remain in balancing efficiency with accuracy, particularly for real-time, low-

power applications.

This study focuses on optimizing AI models for ultra-low-power embedded systems by employing

pruning and quantization techniques. Specifically, it targets a traffic light color recognition task where

an Arduino Nano 32 embedded device, equipped with a camera module, identifies red, yellow, and

green colors and triggers feedback upon detecting red. The research workflow begins with organizing

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

37

a dataset of red, yellow, and green samples. These samples are preprocessed into a standardized

format using OpenCV, resized to 32×32 pixels for subsequent easier use, and normalized to improve

model training efficiency. A lightweight convolutional neural network is trained to classify these

colors. Pruning is then applied during training using TensorFlow's ‘tensorflow_model_optimization’

library, which removes less important model weights to reduce computational complexity.

Subsequently, full integer quantization is performed, converting the model's parameters to 8-bit

integers using TensorFlow Lite, further reducing memory usage and increasing inference speed. The

optimized model is deployed and tested on an Arduino Nano 32 embedded device, where metrics

such as accuracy, power consumption, and inference time are evaluated using measurement tools to

verify the effectiveness of the optimization.

The significance of this research lies in its potential to advance low-power AI deployment in IoT

and edge computing. By addressing the balance between energy efficiency and accuracy, this study

provides practical strategies for TinyML applications and sets a foundation for future developments

in real-time intelligent systems, such as traffic light recognition for smart cars. This analysis addresses

the core challenges of TinyML deployment and provides insights that can be extended to other

resource-constrained AI applications in IoT and edge computing. Additionally, it also highlights the

need for further exploration of hardware-aware optimization to enhance model performance and

scalability.

2. About TinyML

2.1. Background of TinyML

As the Internet of Things and edge devices become ubiquitous daily, the need for efficient and low-

power AI on embedded devices has become a thorny issue. TinyML brings machine learning

capabilities to these constrained environments, enabling real-time inference on tasks. However,

unlike large systems, embedded devices face significant challenges due to their unique computational

power, memory, and battery limitations, such as huge energy consumption, privacy issues, network

and processing latency, and reliability issues [2]. The inability of devices to support complex

computations or high energy requirements makes traditional deep-learning models difficult to

implement.

2.2. Challenges of TinyML

The primary challenge in TinyML lies in reducing model size and energy consumption without

compromising task accuracy. For real-time feedback systems, such as color recognition for real-time

feedback systems, maintaining fast processing time and accuracy is critical. In smart environments,

the essence of TinyML lies in this balancing act between model complexity and the limited

computational resources of tiny devices [3]. Therefore, model optimization techniques are essential

to deploy effective AI on embedded platforms. Pruning reduces the computational burden of the

model by sparsely connecting the network, while quantization minimizes memory usage by

converting model parameters to lower precision. The combination of these techniques makes it

possible to run AI models with reasonable accuracy and energy efficiency on devices with minimal

hardware resources.

This study applies these techniques to a basic TinyML color recognition task, where the model

must recognize red, yellow, and green through a camera module on an Arduino Nano 32 (embedded

device) and trigger feedback when red is detected. A balanced approach is shown by implementing a

combination of pruning and quantization, which meets low power requirements without significantly

affecting the inference quality. This analysis addresses the core challenges of TinyML deployment

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

38

and provides insights that can be extended to other resource-constrained AI applications in IoT and

edge computing.

3. Data Preparation and Model Training

3.1. Data Collection and Labeling

The accuracy of a machine learning model depends on the quality of its dataset. A high-quality dataset

accurately represents real-world phenomena, which is comprehensive and free from biases. The

quality of the dataset can have a significant impact on the accuracy and effectiveness of the ML model

[4]. The goal of this study is to develop a color recognition model capable of identifying red, yellow,

and green. To construct a dataset that supports diverse analysis, each of the three color categories—

red, yellow, and green—contains 100 images, sourced from online image repositories.

To ensure data quality, each image was collected under similar lighting during the screening

process to minimize the impact of changes in brightness and shadows, thereby improving the stability

of the model under different lighting conditions. The images were labeled with its corresponding

color: red is assigned as class 0, yellow as class 1, and green as class 2. This structured labeling is

critical to correctly distinguish colors and accurately analyze categories when the model is

subsequently reasoned on an embedded device.

3.2. Data Preprocessing

Due to the limited memory and computational resources of the Arduino Nano 32, preprocessing is a

critical step in optimizing the model for efficient deployment on this embedded platform. The goal

of preprocessing is to reduce the image size and standardize the input format, ensuring efficient model

performance without sacrificing necessary color information. Each image is resized to a resolution of

32x32 pixels, which strikes a balance between computational efficiency and sufficient color

differentiation details. This small but sufficient resolution allows the model to capture and distinguish

the color patterns required for red, yellow, and green without wasting too much computational

overhead. Adjusting to this input size ensures that each image consume minimal memory, making it

manageable on low-power hardware. Using OpenCV, pixel values are divided by 255, and images

are resized and normalized to the [0, 1] range, enhancing the model's ability to handle intensity

changes and avoiding errors caused by being too sensitive to brightness. The images are converted to

RGB format to be compatible with the ‘TensorFlow’ model, and each processed image is stored in a

NumPy array as a dataset. The appropriate size for training, validation, and test sets in machine

learning model development is a often overlooked but crucial factor [5]. Therefore, to effectively

train a compact model for embedded color recognition, the processed dataset is split into training and

validation sets with a ratio of 8:2.

4. Optimization

4.1. Pruning Methods for Model

There are two main types of pruning strategies: structured and unstructured, each with different

characteristics in terms of implementation, computational complexity, and effectiveness. Structured

pruning removes entire structures from the network,which ensures that the pruned network retains a

regular structure, making it more efficient to implement on hardware. Since structured pruning retains

the regular structure of the network, it aligns better with hardware acceleration and embedded device

constraints, resulting in faster inference time and lower power consumption. However, structured

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

39

pruning is more aggressive as it removes entire units. This can result in extreme accuracy degradation

if not carefully tuned.

On the other hand, unstructured pruning removes individual weights based on their magnitude,

creating sparse connections in the network. This approach can achieve more fine-grained compression

by targeting the weights that contribute the least to the model output. It allows for finer pruning,

resulting in higher compression rates without noticeable accuracy loss. However, t often incurs

additional overhead regarding memory access patterns and computational load, especially on

resource-constrained devices. In In summary, structured pruning offers faster models with potential

accuracy trade-offs, while unstructured pruning maintains higher accuracy at the cost of more

complexity and potentially lower efficiency. Structured pruning is easier to implement, as it focuses

on larger network blocks, while unstructured pruning is more precise but adds complexity to the

optimization process[6].

4.2. Pruning Data and Analysis

Structured pruning was chosen for this study because it is consistent with the hardware capabilities

of the Arduino Nano 32. Unstructured pruning is less practical here because the device lacks advanced

computational capabilities for sparse matrix operations. Once the model is trained, it can be

compressed with a small loss in accuracy. Pruning is a model compression technique that

systematically removes unimportant weights from a neural network, thereby reducing the size and

computational requirements of the model. It removes the connections below a certain threshold since

these provide low or no utility to the output and may even lead to overfitting [7].

For the color classification model, pruning was implemented using TensorFlow’s

‘tensorflow_model_optimization’ library, which allows pruning during training according to a

specified pruning schedule.

The polynomial decay schedule starts with an initial sparsity of 20% and gradually increases the

sparsity to 80% at the end of training. This gradual approach helps ensure that important weights are

retained, minimizing the impact on model accuracy.

Table 1: Pruning data

 Before Pruning After Pruning

Model Size 160 KB 100 KB

Accuracy 95.1% 87.4%

Inference Speed 61ms 40ms

The 'sparsity.prune_low_magnitude' (pruning wrapper) automatically prunes each layer during

training by identifying and setting the weights with the lowest magnitude to 0, which has the least

impact on the model. After pruning is complete, the model contains sparse connections with a

significant portion of the weights set to 0. To prepare the model for deployment, remove any pruning

configuration to strip out pruning-specific metadata and hooks, making it ready for conversion to

TensorFlow Lite format. Pruned models are more compact and efficient, which directly benefits

embedded deployment. The results are shown in Table 1, pruning reduced the model size by about

37% with little impact on accuracy. The pruned model performed comparable to the original model

on a color classification task, with only a slight drop in accuracy of about 8%. The reduction in model

size means lower memory usage and faster inference, making it ideal for real-time applications on

resource-constrained devices. The reduction in model size and computational requirements after

pruning significantly increased the model's suitability for deployment on an Arduino Nano 32,

demonstrating the effectiveness of pruning techniques for TinyML applications.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

40

4.3. Combination of Pruning and Quantization

The combination of pruning and quantization achieves maximum optimization of the model and

supports low-power applications on embedded devices. Pruning affects model performance by

removing neurons with less significance. Quantization areduces data type precision, which affects

accuracy. When they are done individually, pruning and quantization result in a considerable loss in

model accuracy since the model is incapable of learning from and correcting any quantization errors

promptly [8]. The combined method integrates the advantages of the two techniques and optimizes

the model size, inference speed, and energy consumption by using their complementary

characteristics while ensuring the impact on accuracy. Although both pruning and quantization result

in a slight loss of accuracy, the combined model can still achieve an accuracy of 81.6%. Pruning

provides a basis for scarification, reduces unnecessary parameters and computation, and creates

conditions for further optimization of quantization. Quantization reduces the demand for storage and

computing resources by reducing data precision.

4.4. Quantization for Low-Power Inference

Quantization is another model optimization technique that reduces the precision of model parameters.

It is a key technology for optimizing machine learning models for resource-constrained devices.

Different quantization strategies create trade-offs between model size, computational efficiency, and

accuracy. It is important to choose the most appropriate method according to the situation. The two

main types of quantization are floating-point quantization and fixed-point quantization. Floating-

point quantization reduces the weights to a lower-precision 8-bit or 16-bit floating-point format. This

method retains higher precision than fixed-point quantization, making it suitable for complex models

where accuracy is the goal. However, compared with integer quantization, its advantages in power

and memory efficiency are less significant. While floating-point quantization can maintain higher

accuracy due to its wider range and reduced quantization error, fixed-point quantization can still

perform well if managed properly [9]. It converts all weights of the model to 8-bit integers, which

significantly reduces memory usage and computational costs because integer operations are much

faster than floating-point operations and consume less power. The main disadvantage of this method

is that it may lead to accuracy loss due to reduced precision in models with a large dynamic range.

4.5. Quantization Data and Analysis

Full integer quantization was chosen because of its alignment with the constraints and capabilities of

the target hardware. The quantization process involved the mapping of weights stored in high-

precision values to lower-precision data types [10]. This reduces the memory footprint and

computational requirements of the model, which is particularly beneficial for the Arduino Nano 32,

where efficiency is critical in embedded devices. By converting to a smaller integer-based format,

quantization reduces the energy required for inference, making it suitable for real-time, low-power

applications. This study applies full integer quantization to the color classification model after

pruning. This process quantizes the weights and activations so that all computations during inference

are performed using 8-bit integer values instead of more power-hungry 32-bit floating-point values.

Full integer quantization is particularly beneficial for TinyML applications because integer operations

do not require as much power and memory, allowing the device to run longer on battery.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

41

Table 2: Quantization data

 Before Quantization After Quantization

Model Size 160KB 63KB

Accuracy 95.1% 81.6%

Inference Speed 100mW 69mW

The quantization process uses a 'TFLiteConverter' with specific quantization settings. The

representative dataset helps the model calibrate its dynamic range during the quantization process,

which guarantees the model's accuracy. The calibration step adjusts the value range of each layer to

fit the 8-bit integer range. This specifies the data type of the model as int8, indicating that both weights

and activations will use 8-bit integers. The quantized model is deployed on an Arduino Nano 32 for

real-time color recognition. Since integers are less computationally intensive, the quantized model

runs faster and consumes less power than the original floating-point model. The results are shown in

Table 2, by quantizing both weights and activations to 8-bit integers, power consumption during

inference was reduced by about 31%, which is very beneficial for battery-powered devices. The

accuracy difference is small, with the quantized model being about 81.6% accurate compared to 95.1%

for the original. Although the accuracy loss is not substantial, full integer quantization still resultes in

a slight decline in performance for more complex tasks. Additionally, quantization requires the use

of a representative dataset to calibrate the dynamic range, which adds more complexity.

5. Discussion

5.1. Finding

The results of this study demonstrate the effectiveness of pruning and quantization in optimizing a

simple color classification model for deployment on an Arduino Nano 32. By removing unimportant

weights using pruning techniques, the model size was reduced by approximately 37% (from 160 KB

to 100 KB) and the inference speed was improved from 61 milliseconds to 40 milliseconds. The

structured pruning approach was particularly effective in aligning with the hardware capabilities of

the target device, although it resulted in a slight decrease in accuracy of 7.7% (from 95.1% to 87.4%).

The increased efficiency and reduced computational requirements make the pruned model more

suitable for resource-constrained environments.

Quantization applied after pruning further reduced the model size by 63% (from 160 KB to 63 KB)

and reduced power consumption during inference by approximately 31% (from 100 mW to 69 mW).

The full integer quantization technique converts all weights and activations to 8-bit integers. This

approach maintains reasonable accuracy, achieving 81.6% accuracy for the quantized model

compared to 95.1% accuracy for the original model. The trade-off between reduced accuracy and

computational efficiency highlights the value of quantization for low-power applications in energy-

constrained devices.

5.2. Remaining Challenges

Despite significant improvements achieved by combining pruning and quantization, several

challenges remain in optimizing machine learning models for embedded systems. One of the main

challenge is the trade-off between model compression and accuracy; structured pruning without

careful tuning can lead to significant accuracy degradation, which is a major problem for tasks that

require high accuracy. Although quantization reduces power consumption and memory usage, it

introduces quantization noise, limiting its effectiveness in complex applications.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

42

Another challenge is the dependence on hardware capabilities, as embedded devices like the

Arduino Nano 32 lack advanced hardware support for sparse matrix operations, making unstructured

pruning difficult to implement. Furthermore, if the hardware does not natively support integer

arithmetic, the quantized model may not achieve its full computational efficiency. These limitations

highlight the limitations of developing optimization strategies for specific hardware platforms.

However, when used together, pruning and quantization together enhance the model's suitability

for deployment by reducing size, increasing inference speed, and reducing energy consumption while

maintaining acceptable accuracy for real-time color recognition tasks. It is clear that pruning and

quantization can effectively reduce model size by removing redundant connections or reducing

parameter precision. This reduction improved computational efficiency, resulting in speedy inference

times and increased throughput, increasing the possibility of deployment of deep neural networks on

resource-constrained devices, and facilitating real-time applications [11]. These findings demonstrate

the practicality of combining these optimization techniques for TinyML applications. The

significance of this study is not limited to the specific task of color recognition. The combined use of

pruning and quantization highlights a scalable approach for deploying TinyML applications in IoT

scenarios such as environmental monitoring, industrial automation, and wearable devices. However,

the observed accuracy trade-offs emphasize the need for task-specific fine-tuning to balance

efficiency and performance. This study also highlights the importance of hardware-aware

optimizations, as the success of these techniques depends on the capabilities of the target platform.

This study demonstrates a practical framework that can advance the role of TinyML in achieving

sustainable, low-power AI solutions.

6. Conclusion

This study explores the effectiveness of pruning and quantization model compression techniques in

optimizing color classification models for low-power real-time inference on embedded devices.

These techniques were investigated to address key challenges in deploying machine learning models

on resource-constrained hardware. Pruning successfully reduced the model's size by about 37% with

little loss in accuracy, making it more compact and efficient for real-time applications. Quantization

further improved energy efficiency by converting 32-bit floating point values to 8-bit integers, which

reduced the model's memory footprint and inference time. Despite an 8% decrease in accuracy,

quantization significantly reduced power consumption by 31%, demonstrating that model

optimization can improve energy efficiency while maintaining adequate performance.

The significance of this study lies in its practical approach to deploying AI models on low-power

devices, enabling TinyML applications to run autonomously for long periods of time. The methods

in this study offer a solid foundationfor optimizing other models, laying the foundation for the wider

application of TinyML in IoT devices such as smart sensors and environmental monitors.

However, this study has limitations. The accuracy of the model is slightly reduced due to

quantization, while nor drastic, may affect more complex or more precision-dependent tasks.

Additionally, this study focused on a single task, color classification, and performed only two

optimization methods, pruning, and quantization, so the results may not translate directly to more

complex or computationally demanding models. Future research could explore other methods for

model optimization to get the most appropriate choice to maximize the performance of the model.

Investigating the impact of these techniques on more complex models and diverse tasks would

provide deeper insights into their effectiveness across various applications. By improving and

adapting these optimization techniques, more powerful AI applications for embedded systems may

be possible in the future.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

43

References

[1] Sabovic, A. Aernouts, M. Subotic, D. Fontaine, J. DePoorter, E. Famaey, J. (2023). Towards energy-aware tinyML

on battery-less IoT devices. Internet Things. 22: 100736. https://doi.org/10.1016/j.iot.2023.100736

[2] Partha, P.R. (2022). A review on TinyML: State-of-the-art and prospects. Journal of King Saud University-

Computer and Information Sciences. 34: 1595-1623. https://doi.org/10.1016/j.jksuci.2021.11.019

[3] n.d. (2024). TinyML: Exploring the world of tiny machine learning. LinkedIn. https://www.linkedin.com/pulse/

tinyml-exploring-world-tiny-machine-learning-scdte/#:~:text=The%20essence

[4] Youdi, G. Guangzhen, L. Yunzhi, X. Rui, L. Lingzhong, M. (2023). A survey on dataset quality in machine learning.

Information and Software Technology. 162: 107268. https://doi.org/10.1016/j.infsof.2023.107268

[5] Braka, O. (2023). On Common Split for Training, Validation, and Test Sets in Machine Learning. https://pub.

towardsai.net/breaking-the-mold-challenging-the-common-split-for-training-validation-and-test-sets-in-machine-

271fd405493d
[6] n.d. (2024). Understanding the difference: Structured vs. unstructured neural pruning. Medium. https://medium.

com/@agi_63938/understanding-the-difference-structured-vs-unstructured-neural-pruning-76292b9384b7#:~:

text=Unstructured%20pruning%20removes%20individual%20weights%20from%20a%20neural, zeros.%

20Unstructured%20pruning%20is%20easier%20than%20structured%20pruning.

[7] Francisco, C. (2021).TinyML models: What’s happening behind the scenes. https://medium.com/marionete/tinyml-

models-whats-happening-behind-the-scenes-5e61d1555be9

[8] Bofeng, J. Jun, C. Yong, L. (2023). Single-shot pruning and quantization for hardware-friendly neural network

acceleration. Engineering Applications of Artificial Intelligence. 126: 106816. https://doi.org/10.1016/j.engappai.

2023.106816

[9] n.d. (2024). Comparison of Fixed-point Versus Floating-point Quantization in Neural Networks. https://peerdh.

com/blogs/programming-insights/comparison-of-fixed-point-versus-floating-point-quantization-in-neural-
networks

[10] Kartik, T. (2024). A Guide to Quantization in LLMs. Symbl.ai. https://symbl.ai/developers/blog/a-guide-to-

quantization-in-llms/.

[11] Ummara, B. Mahrukh, M. Dilshad, S. Muhammad, F.U.B. Ali, H. Mustansar, A.G. Arshad, A.K. Wadood, A. (2024).

Advances in Pruning and Quantization for Natural Language Processing. IEEE Access. 12: 139113 - 139128. https:

//ieeexplore.ieee.org/document/10685352

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20598

44

