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Abstract: With the growing demand for IoT devices, developing low-power AI models on 

embedded systems has become increasingly important. However, the efficient 

implementation of AI models within the computational and battery limitations of these 

devices remains a significant challenge. This study addresses how model pruning and 

quantization compression techniques can reduce power consumption without significantly 

compromising model accuracy. The research method optimizes the performance of the three-

color recognition model, organizes a dataset consisting of red, yellow, and green 

classification images, and pre-processes them to standardize the resolution and format. The 

research object is to use pruning and quantization techniques in combination to optimize 

memory and computational efficiency further. Experimental evaluation was performed on an 

Arduino Nano 32 with a camera model, TensorFlow Lite for Microcontrollers for deployment, 

and a power measurement tool to record energy consumption. The results demonstrate that 

these methods significantly reduce energy consumption while maintaining acceptable 

accuracy for real-time applications. This study provides practical optimization strategies for 

deploying TinyML on resource-constrained devices, offering valuable insights for low-power 

AI development in IoT and edge computing applications. 
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1. Introduction 

With the advent of Tiny Machine Learning, deploying optimized ML models on constrained battery-

less Internet of Things (IoT) devices with minimal energy availability has become increasingly 

viable[1]. However, achieving real-time performance for tasks such as image recognition remains a 

significant challenge due to limited computational power and battery life. Current research in the field 

has explored various optimization techniques, such as pruning and quantization, to address these 

limitations. While these methods have demonstrated success in reducing power consumption and 

model size, challenges remain in balancing efficiency with accuracy, particularly for real-time, low-

power applications. 

This study focuses on optimizing AI models for ultra-low-power embedded systems by employing 

pruning and quantization techniques. Specifically, it targets a traffic light color recognition task where 

an Arduino Nano 32 embedded device, equipped with a camera module, identifies red, yellow, and 

green colors and triggers feedback upon detecting red. The research workflow begins with organizing 
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a dataset of red, yellow, and green samples. These samples are preprocessed into a standardized 

format using OpenCV, resized to 32×32 pixels for subsequent easier use, and normalized to improve 

model training efficiency. A lightweight convolutional neural network is trained to classify these 

colors. Pruning is then applied during training using TensorFlow's ‘tensorflow_model_optimization’ 

library, which removes less important model weights to reduce computational complexity. 

Subsequently, full integer quantization is performed, converting the model's parameters to 8-bit 

integers using TensorFlow Lite, further reducing memory usage and increasing inference speed. The 

optimized model is deployed and tested on an Arduino Nano 32 embedded device, where metrics 

such as accuracy, power consumption, and inference time are evaluated using measurement tools to 

verify the effectiveness of the optimization.  

The significance of this research lies in its potential to advance low-power AI deployment in IoT 

and edge computing. By addressing the balance between energy efficiency and accuracy, this study 

provides practical strategies for TinyML applications and sets a foundation for future developments 

in real-time intelligent systems, such as traffic light recognition for smart cars. This analysis addresses 

the core challenges of TinyML deployment and provides insights that can be extended to other 

resource-constrained AI applications in IoT and edge computing. Additionally, it also highlights the 

need for further exploration of hardware-aware optimization to enhance model performance and 

scalability. 

2. About TinyML 

2.1. Background of TinyML 

As the Internet of Things and edge devices become ubiquitous daily, the need for efficient and low-

power AI on embedded devices has become a thorny issue. TinyML brings machine learning 

capabilities to these constrained environments, enabling real-time inference on tasks. However, 

unlike large systems, embedded devices face significant challenges due to their unique computational 

power, memory, and battery limitations, such as huge energy consumption, privacy issues, network 

and processing latency, and reliability issues [2]. The inability of devices to support complex 

computations or high energy requirements makes traditional deep-learning models difficult to 

implement. 

2.2. Challenges of TinyML 

The primary challenge in TinyML lies in reducing model size and energy consumption without 

compromising task accuracy. For real-time feedback systems, such as color recognition for real-time 

feedback systems, maintaining fast processing time and accuracy is critical. In smart environments, 

the essence of TinyML lies in this balancing act between model complexity and the limited 

computational resources of tiny devices [3]. Therefore, model optimization techniques are essential 

to deploy effective AI on embedded platforms. Pruning reduces the computational burden of the 

model by sparsely connecting the network, while quantization minimizes memory usage by 

converting model parameters to lower precision. The combination of these techniques makes it 

possible to run AI models with reasonable accuracy and energy efficiency on devices with minimal 

hardware resources. 

This study applies these techniques to a basic TinyML color recognition task, where the model 

must recognize red, yellow, and green through a camera module on an Arduino Nano 32 (embedded 

device) and trigger feedback when red is detected. A balanced approach is shown by implementing a 

combination of pruning and quantization, which meets low power requirements without significantly 

affecting the inference quality. This analysis addresses the core challenges of TinyML deployment 
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and provides insights that can be extended to other resource-constrained AI applications in IoT and 

edge computing. 

3. Data Preparation and Model Training 

3.1. Data Collection and Labeling 

The accuracy of a machine learning model depends on the quality of its dataset. A high-quality dataset 

accurately represents real-world phenomena, which is comprehensive and free from biases. The 

quality of the dataset can have a significant impact on the accuracy and effectiveness of the ML model 

[4]. The goal of this study is to develop a color recognition model capable of identifying red, yellow, 

and green. To construct a dataset that supports diverse analysis, each of the three color categories—

red, yellow, and green—contains 100 images, sourced from online image repositories.  

To ensure data quality, each image was collected under similar lighting during the screening 

process to minimize the impact of changes in brightness and shadows, thereby improving the stability 

of the model under different lighting conditions. The images were labeled with its corresponding 

color: red is assigned as class 0, yellow as class 1, and green as class 2. This structured labeling is 

critical to correctly distinguish colors and accurately analyze categories when the model is 

subsequently reasoned on an embedded device. 

3.2. Data Preprocessing 

Due to the limited memory and computational resources of the Arduino Nano 32, preprocessing is a 

critical step in optimizing the model for efficient deployment on this embedded platform. The goal 

of preprocessing is to reduce the image size and standardize the input format, ensuring efficient model 

performance without sacrificing necessary color information. Each image is resized to a resolution of 

32x32 pixels, which strikes a balance between computational efficiency and sufficient color 

differentiation details. This small but sufficient resolution allows the model to capture and distinguish 

the color patterns required for red, yellow, and green without wasting too much computational 

overhead. Adjusting to this input size ensures that each image consume minimal memory, making it 

manageable on low-power hardware. Using OpenCV, pixel values are divided by 255, and images 

are resized and normalized to the [0, 1] range, enhancing the model's ability to handle intensity 

changes and avoiding errors caused by being too sensitive to brightness. The images are converted to 

RGB format to be compatible with the ‘TensorFlow’ model, and each processed image is stored in a 

NumPy array as a dataset. The appropriate size for training, validation, and test sets in machine 

learning model development is a often overlooked but crucial factor [5]. Therefore, to effectively 

train a compact model for embedded color recognition, the processed dataset is split into training and 

validation sets with a ratio of 8:2. 

4. Optimization 

4.1. Pruning Methods for Model 

There are two main types of pruning strategies: structured and unstructured, each with different 

characteristics in terms of implementation, computational complexity, and effectiveness. Structured 

pruning removes entire structures from the network,which ensures that the pruned network retains a 

regular structure, making it more efficient to implement on hardware. Since structured pruning retains 

the regular structure of the network, it aligns better with hardware acceleration and embedded device 

constraints, resulting in faster inference time and lower power consumption. However, structured 
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pruning is more aggressive as it removes entire units. This can result in extreme accuracy degradation 

if not carefully tuned.  

On the other hand, unstructured pruning removes individual weights based on their magnitude, 

creating sparse connections in the network. This approach can achieve more fine-grained compression 

by targeting the weights that contribute the least to the model output. It allows for finer pruning, 

resulting in higher compression rates without noticeable accuracy loss. However, t often incurs 

additional overhead regarding memory access patterns and computational load, especially on 

resource-constrained devices. In In summary, structured pruning offers faster models with potential 

accuracy trade-offs, while unstructured pruning maintains higher accuracy at the cost of more 

complexity and potentially lower efficiency. Structured pruning is easier to implement, as it focuses 

on larger network blocks, while unstructured pruning is more precise but adds complexity to the 

optimization process[6]. 

4.2. Pruning Data and Analysis 

Structured pruning was chosen for this study because it is consistent with the hardware capabilities 

of the Arduino Nano 32. Unstructured pruning is less practical here because the device lacks advanced 

computational capabilities for sparse matrix operations. Once the model is trained, it can be 

compressed with a small loss in accuracy. Pruning is a model compression technique that 

systematically removes unimportant weights from a neural network, thereby reducing the size and 

computational requirements of the model. It removes the connections below a certain threshold since 

these provide low or no utility to the output and may even lead to overfitting [7].  

For the color classification model, pruning was implemented using TensorFlow’s 

‘tensorflow_model_optimization’ library, which allows pruning during training according to a 

specified pruning schedule.  

The polynomial decay schedule starts with an initial sparsity of 20% and gradually increases the 

sparsity to 80% at the end of training. This gradual approach helps ensure that important weights are 

retained, minimizing the impact on model accuracy. 

Table 1: Pruning data 

 Before Pruning After Pruning 

Model Size 160 KB 100 KB 

Accuracy 95.1% 87.4% 

Inference Speed 61ms 40ms 

 

The 'sparsity.prune_low_magnitude' (pruning wrapper) automatically prunes each layer during 

training by identifying and setting the weights with the lowest magnitude to 0, which has the least 

impact on the model. After pruning is complete, the model contains sparse connections with a 

significant portion of the weights set to 0. To prepare the model for deployment, remove any pruning 

configuration to strip out pruning-specific metadata and hooks, making it ready for conversion to 

TensorFlow Lite format. Pruned models are more compact and efficient, which directly benefits 

embedded deployment. The results are shown in Table 1, pruning reduced the model size by about 

37% with little impact on accuracy. The pruned model performed comparable to the original model 

on a color classification task, with only a slight drop in accuracy of about 8%. The reduction in model 

size means lower memory usage and faster inference, making it ideal for real-time applications on 

resource-constrained devices. The reduction in model size and computational requirements after 

pruning significantly increased the model's suitability for deployment on an Arduino Nano 32, 

demonstrating the effectiveness of pruning techniques for TinyML applications.  
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4.3. Combination of Pruning and Quantization 

The combination of pruning and quantization achieves maximum optimization of the model and 

supports low-power applications on embedded devices. Pruning affects model performance by 

removing neurons with less significance. Quantization areduces data type precision, which affects 

accuracy. When they are done individually, pruning and quantization result in a considerable loss in 

model accuracy since the model is incapable of learning from and correcting any quantization errors 

promptly [8]. The combined method integrates the advantages of the two techniques and optimizes 

the model size, inference speed, and energy consumption by using their complementary 

characteristics while ensuring the impact on accuracy. Although both pruning and quantization result 

in a slight loss of accuracy, the combined model can still achieve an accuracy of 81.6%. Pruning 

provides a basis for scarification, reduces unnecessary parameters and computation, and creates 

conditions for further optimization of quantization. Quantization reduces the demand for storage and 

computing resources by reducing data precision. 

4.4. Quantization for Low-Power Inference 

Quantization is another model optimization technique that reduces the precision of model parameters. 

It is a key technology for optimizing machine learning models for resource-constrained devices. 

Different quantization strategies create trade-offs between model size, computational efficiency, and 

accuracy. It is important to choose the most appropriate method according to the situation. The two 

main types of quantization are floating-point quantization and fixed-point quantization. Floating-

point quantization reduces the weights to a lower-precision 8-bit or 16-bit floating-point format. This 

method retains higher precision than fixed-point quantization, making it suitable for complex models 

where accuracy is the goal. However, compared with integer quantization, its advantages in power 

and memory efficiency are less significant. While floating-point quantization can maintain higher 

accuracy due to its wider range and reduced quantization error, fixed-point quantization can still 

perform well if managed properly [9]. It converts all weights of the model to 8-bit integers, which 

significantly reduces memory usage and computational costs because integer operations are much 

faster than floating-point operations and consume less power. The main disadvantage of this method 

is that it may lead to accuracy loss due to reduced precision in models with a large dynamic range. 

4.5. Quantization Data and Analysis 

Full integer quantization was chosen because of its alignment with the constraints and capabilities of 

the target hardware. The quantization process involved the mapping of weights stored in high-

precision values to lower-precision data types [10]. This reduces the memory footprint and 

computational requirements of the model, which is particularly beneficial for the Arduino Nano 32, 

where efficiency is critical in embedded devices. By converting to a smaller integer-based format, 

quantization reduces the energy required for inference, making it suitable for real-time, low-power 

applications. This study applies full integer quantization to the color classification model after 

pruning. This process quantizes the weights and activations so that all computations during inference 

are performed using 8-bit integer values instead of more power-hungry 32-bit floating-point values. 

Full integer quantization is particularly beneficial for TinyML applications because integer operations 

do not require as much power and memory, allowing the device to run longer on battery. 
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Table 2: Quantization data 

 Before Quantization After Quantization 

Model Size 160KB 63KB 

Accuracy 95.1% 81.6% 

Inference Speed 100mW 69mW 

 

The quantization process uses a 'TFLiteConverter' with specific quantization settings. The 

representative dataset helps the model calibrate its dynamic range during the quantization process, 

which guarantees the model's accuracy. The calibration step adjusts the value range of each layer to 

fit the 8-bit integer range. This specifies the data type of the model as int8, indicating that both weights 

and activations will use 8-bit integers. The quantized model is deployed on an Arduino Nano 32 for 

real-time color recognition. Since integers are less computationally intensive, the quantized model 

runs faster and consumes less power than the original floating-point model. The results are shown in 

Table 2, by quantizing both weights and activations to 8-bit integers, power consumption during 

inference was reduced by about 31%, which is very beneficial for battery-powered devices. The 

accuracy difference is small, with the quantized model being about 81.6% accurate compared to 95.1% 

for the original. Although the accuracy loss is not substantial, full integer quantization still resultes in 

a slight decline in performance for more complex tasks. Additionally, quantization requires the use 

of a representative dataset to calibrate the dynamic range, which adds more complexity. 

5. Discussion 

5.1. Finding 

The results of this study demonstrate the effectiveness of pruning and quantization in optimizing a 

simple color classification model for deployment on an Arduino Nano 32. By removing unimportant 

weights using pruning techniques, the model size was reduced by approximately 37% (from 160 KB 

to 100 KB) and the inference speed was improved from 61 milliseconds to 40 milliseconds. The 

structured pruning approach was particularly effective in aligning with the hardware capabilities of 

the target device, although it resulted in a slight decrease in accuracy of 7.7% (from 95.1% to 87.4%). 

The increased efficiency and reduced computational requirements make the pruned model more 

suitable for resource-constrained environments.  

Quantization applied after pruning further reduced the model size by 63% (from 160 KB to 63 KB) 

and reduced power consumption during inference by approximately 31% (from 100 mW to 69 mW). 

The full integer quantization technique converts all weights and activations to 8-bit integers. This 

approach maintains reasonable accuracy, achieving 81.6% accuracy for the quantized model 

compared to 95.1% accuracy for the original model. The trade-off between reduced accuracy and 

computational efficiency highlights the value of quantization for low-power applications in energy-

constrained devices. 

5.2. Remaining Challenges 

Despite significant improvements achieved by combining pruning and quantization, several 

challenges remain in optimizing machine learning models for embedded systems. One of the main 

challenge is the trade-off between model compression and accuracy; structured pruning without 

careful tuning can lead to significant accuracy degradation, which is a major problem for tasks that 

require high accuracy. Although quantization reduces power consumption and memory usage, it 

introduces quantization noise, limiting its effectiveness in complex applications.  
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Another challenge is the dependence on hardware capabilities, as embedded devices like the 

Arduino Nano 32 lack advanced hardware support for sparse matrix operations, making unstructured 

pruning difficult to implement. Furthermore, if the hardware does not natively support integer 

arithmetic, the quantized model may not achieve its full computational efficiency. These limitations 

highlight the limitations of developing optimization strategies for specific hardware platforms.  

However, when used together, pruning and quantization together enhance the model's suitability 

for deployment by reducing size, increasing inference speed, and reducing energy consumption while 

maintaining acceptable accuracy for real-time color recognition tasks. It is clear that pruning and 

quantization can effectively reduce model size by removing redundant connections or reducing 

parameter precision. This reduction improved computational efficiency, resulting in speedy inference 

times and increased throughput, increasing the possibility of deployment of deep neural networks on 

resource-constrained devices, and facilitating real-time applications [11]. These findings demonstrate 

the practicality of combining these optimization techniques for TinyML applications. The 

significance of this study is not limited to the specific task of color recognition. The combined use of 

pruning and quantization highlights a scalable approach for deploying TinyML applications in IoT 

scenarios such as environmental monitoring, industrial automation, and wearable devices. However, 

the observed accuracy trade-offs emphasize the need for task-specific fine-tuning to balance 

efficiency and performance. This study also highlights the importance of hardware-aware 

optimizations, as the success of these techniques depends on the capabilities of the target platform. 

This study demonstrates a practical framework that can advance the role of TinyML in achieving 

sustainable, low-power AI solutions. 

6. Conclusion 

This study explores the effectiveness of pruning and quantization model compression techniques in 

optimizing color classification models for low-power real-time inference on embedded devices. 

These techniques were investigated to address key challenges in deploying machine learning models 

on resource-constrained hardware. Pruning successfully reduced the model's size by about 37% with 

little loss in accuracy, making it more compact and efficient for real-time applications. Quantization 

further improved energy efficiency by converting 32-bit floating point values to 8-bit integers, which 

reduced the model's memory footprint and inference time. Despite an 8% decrease in accuracy, 

quantization significantly reduced power consumption by 31%, demonstrating that model 

optimization can improve energy efficiency while maintaining adequate performance.  

The significance of this study lies in its practical approach to deploying AI models on low-power 

devices, enabling TinyML applications to run autonomously for long periods of time. The methods 

in this study offer a solid foundationfor optimizing other models, laying the foundation for the wider 

application of TinyML in IoT devices such as smart sensors and environmental monitors.  

However, this study has limitations. The accuracy of the model is slightly reduced due to 

quantization, while nor drastic, may affect more complex or more precision-dependent tasks. 

Additionally, this study focused on a single task, color classification, and performed only two 

optimization methods, pruning, and quantization, so the results may not translate directly to more 

complex or computationally demanding models. Future research could explore other methods for 

model optimization to get the most appropriate choice to maximize the performance of the model. 

Investigating the impact of these techniques on more complex models and diverse tasks would 

provide deeper insights into their effectiveness across various applications. By improving and 

adapting these optimization techniques, more powerful AI applications for embedded systems may 

be possible in the future. 
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