

Solving the TSP Problem Based on Improved Genetic
Algorithm

Haowang Li1,a,*

1College of Computer Science and Technology, Harbin Engineering University, Harbin, China

a. lhwtbs123456@163.com

*corresponding author

Abstract: This paper proposes an improved genetic algorithm (GA) for solving the Traveling

Salesman Problem (TSP), aiming to overcome the issue of the classic GA becoming trapped

in local optima when solving large-scale TSP instances. The proposed algorithm enhances

the population diversity and global search ability by introducing an adaptive mutation

probability strategy and a dynamic tournament selection strategy. Specifically, the adaptive

mutation probability strategy dynamically adjusts the mutation probability at different stages

of the algorithm, allowing for more mutations when the algorithm converges to a local

optimum, thus helping to escape local optima. The dynamic tournament selection strategy,

based on tournament selection, adjusts the tournament size during the algorithm's execution,

thereby dynamically modifying the selection pressure as the algorithm progresses.

Experimental results show that the improved GA significantly outperforms the classic GA in

terms of solution quality and stability when solving the TSP, effectively finding shorter paths

with smaller standard deviations, and demonstrating higher stability.

Keywords: Artificial Intelligence, Traveling Salesman Problem, Genetic Algorithm,

Dynamic Tournament Selection

1. Introduction

The The Traveling Salesman Problem (TSP) is a classic optimization problem where a salesman must

visit each city exactly once and return to the starting point, minimizing the total travel distance. The

problem has been a significant research topic since the 1950s. Early work, such as Mendelsohn's basic

model in 1954 [1], focused on formalizing TSP using graph theory and matrix representations. In the

1960s, heuristic methods like R.L. Graham's algorithm in 1962[2] provided reasonable

approximations, though not optimal solutions. The 1980s saw the development of exact algorithms

like Branch and Bound and Dynamic Programming, but due to high computational costs, these were

limited to small-scale instances [3].

As TSP is NP-hard, finding exact solutions for large instances is impractical, leading to a shift

towards heuristic algorithms. Common methods include the Greedy Algorithm, Simulated Annealing,

and Genetic Algorithms (GA). GA, in particular, has been successful due to its strong global search

ability[4]. However, it struggles with local optima, affecting solution quality and convergence speed,

especially for large-scale problems.

To address this, the paper proposes an improved GA that introduces a diversity-preserving

mechanism. This includes an adaptive mutation strategy to enhance search ability and a dynamic

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

73

tournament selection process to balance exploration and exploitation, leading to better solutions and

increased population diversity.

2. Algorithm Principles and Improvement Strategies

This section first introduces the principles of the classical genetic algorithm and the improvement

strategies proposed in this paper. It then provides an overview of the algorithm's implementation for

solving the TSP problem.

2.1. Classical Genetic Algorithm

Genetic Algorithm is an optimization algorithm that simulates the genetic and evolutionary processes

in nature. Its core idea is based on the mechanisms of natural selection, inheritance, and mutation in

biological evolution. By gradually selecting superior solutions in the solution space, the genetic

algorithm mimics the process where individuals better adapted to the environment are more likely to

survive and reproduce, thus continuously optimizing individuals in the population to achieve the

optimal solution to the problem.

Start

Initial population

Selection

Cross

Mutation

Evaluate fitness

Termination condition?

End

Output

Creating new populations

No

Yes

Figure 1: Flowchart of the Classical Genetic Algorithm

The basic operations of a genetic algorithm include population initialization, individual evaluation,

selection, crossover, and mutation. The algorithm flowchart is shown in Figure 1.

2.2. Improvement Strategy

The classical genetic algorithm performs well in many optimization problems; however, it is

susceptible to premature convergence, which can cause the algorithm to get trapped in local optima

before fully exploring the solution space. To address this issue, two improvement strategies are

introduced in this paper, aimed at increasing population diversity to prevent premature convergence

and effectively escape local optima. The specific implementation and effects of these two strategies

will be presented next.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

74

2.2.1. Adaptive Mutation Probability Strategy

In the process of solving optimization problems using intelligent algorithms, although the algorithm

can effectively explore the solution space, it may sometimes become trapped in local optima. When

the algorithm enters a local optimum, the superior individuals in the population tend to concentrate

around that solution, making it difficult to escape from the local optimal region. To overcome this

issue, it is necessary to enhance the algorithm's exploration ability by increasing population diversity,

and one common approach is to adjust the mutation strategy [6].

To address this problem, this paper proposes an adaptive mutation probability adjustment

mechanism. When the algorithm detects that it has entered a local optimum, the mutation probability

will be appropriately increased to enhance population diversity. Specifically, we design a local

optimum detection mechanism: if the algorithm fails to generate a better solution over five

consecutive generations, it is considered to have fallen into a small local optimum state. In this case,

the mutation probability will be increased to twice the initial value. If no better solution is found

within the next 15 generations, the mutation probability will be increased to four times the initial

value. If the algorithm successfully escapes the local optimum state and finds a better solution, the

current local optimum state is broken, and the mutation probability is restored to its initial value.

2.2.2. Dynamic Tournament Selection Strategy

Tournament selection is a common selection mechanism in genetic algorithms. The basic idea is to

randomly select a group of individuals from the population to form a "small tournament," and then

choose the individual with the best fitness as a parent [5]. However, in traditional tournament

selection mechanisms, the tournament size (i.e., the number of individuals participating in the

competition) is typically fixed, which may result in either excessive or insufficient selection pressure,

affecting the algorithm's convergence speed and global search ability.

To address this issue, this paper proposes a dynamic tournament selection strategy that adjusts the

tournament size based on the diversity of the population, thereby balancing the algorithm's ability for

both global and local search. The dynamic size adjustment method is shown in equation (1).

𝑇dyn = ⌊𝑇init × (1−
𝑔

𝐺
)⌋ (1)

Where Tdyn is the dynamically adjusted tournament size, Tinit is the initial tournament size, g is

the current generation, and G is the total number of generations. This formula indicates that as the

number of generations increases, the tournament size gradually decreases until it reaches a minimum

value.

Specifically, in the early stages, a large tournament size means that individuals with higher fitness

are more likely to be selected in each selection process [7]. This helps accelerate the propagation of

high-quality solutions, allowing the population to converge to a good solution more quickly. In the

later stages, as the number of iterations increases, reducing the selection pressure allows more

individuals to have the opportunity to be selected, which helps maintain the diversity of the population

and prevents the algorithm from getting trapped in local optima. This dynamic adjustment of the

tournament size strategy can flexibly adjust the selection pressure based on the evolutionary state of

the population, preventing premature convergence while maintaining sufficient exploration, thereby

enhancing the algorithm's global optimization capability.

2.2.3. Improved Genetic Algorithm

The flowchart of the algorithm after introducing the improved strategies is shown in Figure 2.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

75

Start

Initial population

Dynamic tournament selection

Cross

Mutation

Evaluate fitness

Termination condition?

End

Output

Creating new populations

Yes

Trapped in local optimality?

Increase mutation probability

No

Yes

Initialize the mutation probability

No

Figure 2: Improved Algorithm Flowchart

2.2.4. Algorithm implementation in TSP

The improved algorithm still follows the framework of the classical genetic algorithm, with steps

including population initialization, fitness evaluation, selection, crossover, and mutation. The

implementation steps of the algorithm are as follows:

- Population Initialization: First, generate a number of individuals equal to the population size,

with each individual representing a potential solution. During initialization, the genetic values of the

individuals are generated randomly to ensure population diversity.

- Fitness Evaluation: Evaluate the fitness of each individual according to the predefined objective

function. The objective function for the TSP problem in this paper is shown in Formula (2).

𝐷 = ∑  

𝑛−1

𝑖=1

𝑑(𝑃𝑖, 𝑃𝑖+1) + 𝑑(𝑃𝑛 , 𝑃1) (2)

Where D is the total travel distance, d(Pi,Pi+1) is the distance between the i-th city and the (i+1)-

th city, and n is the total number of cities. Since the TSP problem seeks to minimize the total distance,

the fitness function is taken as the reciprocal, as shown in Formula (3).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐷
(3)

Selection Operation: The dynamic tournament selection method is used to select individuals with

higher fitness from the current population to enter the next generation. The dynamic size calculation

formula is shown in Formula (1).

Crossover Operation: Using single-point crossover, the genes of two individuals are exchanged

to generate the next generation of individuals.

Mutation Operation: To enhance the diversity of the population, certain individuals' genes are

mutated randomly. To avoid falling into local optima, an adaptive mutation probability adjustment

mechanism is designed. When the algorithm detects that it has entered a local optimum, the mutation

probability is appropriately increased to enhance the population's diversity. Specifically, if the

algorithm fails to generate a better solution within 5 consecutive generations, it is considered to have

fallen into a local optimum, and the mutation probability is increased to twice its initial value. If no

better solution is found within the following 15 generations, the mutation probability is further

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

76

increased to four times its initial value. If the algorithm successfully escapes the local optimum and

finds a better solution, the mutation probability is restored to its initial value.

- Local Optimum Judgment Mechanism: By recording the number of consecutive generations

without improvement, the system determines if a local optimum has been reached. If no better

solution is found within 5 consecutive generations, the mutation probability increase operation is

triggered. If no better solution is found within the next 15 generations, the mutation probability is

further increased until the local optimum is escaped.

3. Experimental analysis

In the experimental part of this paper, the improved genetic algorithm is compared with the classical

genetic algorithm. The experimental test set is the random distribution coordinates of 20 cities in two-

dimensional coordinate system (maximum value :9999). This section first introduces the parameter

configuration of the experiment, and then shows the experimental results and analyzes the results.

In this paper, the population of the improved genetic algorithm and the classical genetic algorithm

are both 100, the maximum number of iterations is 150, the mutation probability is 0.05, and the test

set is the same. On this basis, we conducted 20 independent calculations of the original classical

genetic algorithm and the improved genetic algorithm in this paper respectively and recorded them.

Figure 3(a) shows the best value curve after 20 calculations of the original genetic algorithm, and

Figure 3(b) shows the best value curve after 20 calculations of the improved genetic algorithm.

(a) (b)

Figure 3: Comparison of algorithm operation results

The comparison of indicators after calculation is shown in Table 1.

Table 1: Comparison of algorithm operation indicators

index Classical genetic algorithm Improved genetic algorithm

Optimal solution (TSP total

route distance)
36048.76 32944.98

Mean solution 38265.23 33476.57

Convergent generation 42.5 108.5

Average run time (seconds) 2.23 3.58

Standard deviation 2407.48 1223.89

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

77

As can be seen from Table 1, the improved genetic algorithm outperforms the classical genetic

algorithm in terms of optimal solution. The optimal solution of the improved algorithm is 32944.98,

which is lower than 36048.76 of the classical genetic algorithm, indicating that the improved

algorithm can find a shorter path and thus has better optimization ability when solving the traveling

salesman problem. In terms of average solution, the average solution of the improved genetic

algorithm is 33476.57, which is also better than the 38265.23 of the classical genetic algorithm, which

further proves that the quality of the solution of the improved algorithm is better in multiple runs. The

results show that the improved algorithm can avoid the local optimal solution more effectively in

algorithm design, and can converge stably to the better solution in the search process.

In terms of convergence speed and average running time, the classical genetic algorithm shows

obvious advantages. The classical genetic algorithm can converge to the optimal solution in 42.5

generations, and the average running time is 2.23s. The improved genetic algorithm takes 108.5

generations to complete the convergence, and the average running time is 3.58s. The results show

that the classical genetic algorithm can find an acceptable solution in a shorter time, while the

improved genetic algorithm has slower convergence and longer running time due to the addition of

diversity mechanism.

The standard deviation reflects the stability of the algorithm solution in many experiments. The

standard deviation of the improved genetic algorithm is 1223.89, which is significantly lower than

the 2407.48 of the classical genetic algorithm, which indicates that the improved algorithm is more

stable, and can still maintain a more consistent high-quality solution after multiple independent

operations.

In summary, the improved genetic algorithm has obvious advantages in the quality and stability of

the solution, and performs better than the classical genetic algorithm in the aspects of optimal solution

and average solution, and the improved algorithm has a smaller standard deviation, showing higher

stability.

4. Conclusion

This paper reviews the development and solving methods of the Traveling Salesman Problem (TSP),

highlighting the advantages and limitations of each approach. While the genetic algorithm (GA) is

effective for TSP, it often suffers from premature convergence to local optima. To address this, the

paper proposes an improved GA that introduces an adaptive mutation probability strategy and a

dynamic tournament selection strategy, both designed to enhance population diversity and global

search ability, thereby avoiding local optima. Experimental results show that the improved algorithm

outperforms the classical GA in terms of solution quality, stability, and diversity, achieving shorter

paths with lower variance in large-scale TSP instances. Although the improved algorithm has a slower

convergence rate and longer running time, the gains in solution quality and stability make it a

worthwhile trade-off.

References

[1] Mendelsohn L. The Traveling Salesman Problem[J]. Journal of the Operations Research Society of America, 1954,

2(1): 1-8.

[2] Graham R L. An Improved Approximation for the Traveling Salesman Problem[J]. Operations Research, 1962,

10(3): 101-105.

[3] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, 1983, 220(4598): 671-

680.

[4] Wang Jianwen, Dai Guangming, Xie Baiqiao, et al. Summary of algorithms for solving TSP problems [J]. Computer

Engineering and Science,2008,(02):72-74+155.

[5] Wei Jianbing. Research on Multi-selection based MGGA algorithm in container scheduling optimization [J].
Information technology and informatization,2023,(10):109-113.

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

78

[6] Song Junfu, Xu Binghui, Zhang Yan, et al. Robot path Planning based on Improved Adaptive Genetic Algorithm [J].

Information Technology,2022,46(11):49-53+60.

[7] Chen Qin, WU Yu, YAN Ying, et al. Research on missile reconnaissance task assignment Method based on

Tournament Evolution Algorithm [J/OL]. Flight Mechanics,1-8[2024-12-07].

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/133/2025.20603

79

