

Machine learning algorithm and training in Go—Take three
influential program as example

Qiao Zhang
University of Science and Technology of China, 96 Jinzhai Road, Hefei City, Anhui
Province, China

zqa529981932@mail.ustc.edu.cn

Abstract. In 2017, AlphaGo, an artificial intelligence in Go, beat KeJie----the No.1 Go player
in 3-0, which have surprised the world, and artificial intelligence came to the attention of the
public again. In this article, we take three influential artificial intelligence Go----AlphaGo,
AlphaGo Zero and KataGo, as example to discuss how artificial intelligence Go work. We
discuss them about their structures and training methods one by one in chronological order,
which can also show the process of their development. In addition, some of the structures and
training methods are enlightening to us, and we expect them can work in other fields.

Keywords: machine learning, neural network, monte Carlo tree search, AlphaGo.

1. Introduction
At the end of the 20th century, with the development of internet technology and hardware equipment,
the innovative research of artificial intelligence (AI) is accelerated, and the artificial intelligence
technology is further promoted to be practical, including in chess game, one of the landmark of its
progress is that in chess, IBM's Deep Blue supercomputer beat world champion Garry Kasparov in
1997 [1]. After that, artificial intelligence kept going forward in chess game and continuously defeated
human best professional chess players in various chess games, except Go.

Go, a strategic two-player board game, use a rectangular checkerboard and black and white
dichroic round pieces to play, the two sides alternate. A regular checkerboard has 19 line segments and
361 intersections, and the pieces must walk on the intersections where the spaces are not forbidden.

There are about 10^170 legal variations in Go [2], much more than number of atoms in the
universe (about 10^80), so the search tree is too much to Go through all the cases [3-4] and even the
judgement of the present situation is hard. So for a long time, artificial intelligence in Go still cannot
reach the level to even the best amateur player. In 2012, Zen, an Artificial Intelligence Go (AIGo)
from Japan, won Masaki takemiya (one of the best professional Go player of Japan) in five and four
handicap game, which meant it has come up with the level of Amateur master-hand. Nevertheless, the
development stopped again, and an "optimistic estimate" from the developers of AIGo also sees it
would take 15 to 20 years for AIGo to reach the level to human best professional Go player.

However, the turning point happened. In October 2015, AlphaGo made history when it defeated
Fan Hui [5], becoming the first AIGo to beat a professional Go player on a 19-way board without
handicap. In March 2016, AlphaGo beat Lee Sedol, a leading professional Go player, 4-1 in a five-

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

391

game match, becoming the first AIGo to defeat a professional Go player of nine stages. From the end
of 2016 to the beginning of 2017, AlphaGo was strengthened again under the name of "Master", under
the condition of not disclosing its real identity, through the informal network hayago battle (both
players must make the decision in a short time) for testing, challenged the first-class Master of China,
South Korea and Japan, and won all 60 games. In May 2017, an enhanced version of AlphaGo Master
won 3-0 against Ke Jie, the world's No. 1 player. After that, Google Deepmind, the developer team of
AlphaGo, reported a new version of its program AlphaGo Zero [6]. It learns Go by teaching itself, and
beat AlphaGo Lee, the version which beat Lee Sedol in 2016, with the score 100:0 only after 3 days of
training, beat Master with 40 days of training.

For other kinds of chess games, AlphaZero (with the similar network and training progress as
AlphaGo Zero) all had reached the level of human best professional player within 24 hours’ training
in Chess, Go and Shogi. For Go, it has changed a lot the way that people think about Go both in
amateur games and professional competitions. In addition, many people came to this field to find more
powerful AIGo. But even for now, there is still a far way to reach the ultimate stage in Go.

For now the variations in Go is too more to traversal, if we can find some ways to simplify Go, or
new way to understand it, it may be meaningful. So the research in Go will not only help us to find
better choice in Go, but can also expand to other fields in picture processing, mechanical engineering
and so on.

This passage will help you know about some of the influential AIGo, and discuss the potential
room for improvement. Furthermore, some new improvements used in AIGo might be expanded to
other fields.

2. Literature review

2.1. AlphaGo
Before AlphaGo comes out [5], the experts in AI area believes there is still a long way for Artificial
Intelligence Go to reach the level of human experts. However, the emergence of AlphaGo in 2015
surprises us for beating Fan hui—a human professional Go player, and launches a blast of upsurge in
the study of AI. It is the first time for a computer program to defeat a human professional player in the
full-sized Go game. And it continues updating and beats leading professional Lee Sedol in 2016, the
world's No. 1 player Ke Jie in 2017.

After defeated Fan hui, the team of the developers of AlphaGo published the article to explain how
AlphaGo works and how did it come to be [5].

2.1.1. Basic architecture and parameters. AlphaGo consists of four main parts: policy networks,
value networks, rollout policy, and Monte Carlo tree search (MCTS) [7-8].

Policy networks’ input is a simple representation of the board state, which contains the
understanding by human like ladder and liberties, and its output is all legal moves’ probability
distribution at present situation.

The input to value networks is almost the same as which to policy networks, and we use it to
predict the outcome played by policy p for both players from the position of games [8].

Rollout policy’s input and output are the same as policy networks. It is used to make simulations to
the end of the game in only about 2μs—1/1000 of policy networks.

MCTS selects actions by lookahead search with the help of policy and value networks and playouts.

2.1.2. The way of AlphaGo running. The input to policy networks is a simple representation of the
board sta.

The policy networks, value networks and rollout policy trained already are combined to an MCTS
algorithm, which called AlphaGo.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

392

AlphaGo traverse the tree by simulation from the root node to the terminal state by rollout policy,
and each node stores the data: prior probability P(s,a), action value Q(s,a), Monte Carlo estimation of
total action Wv(s,a) and Wr(s,a) accumulated over Nv(s,a) leaf evaluations and Nr(s,a) rollout rewards.

There are four steps at each simulation.
1. Selection
First, from root node, it traverses the tree until reach a leaf node sL at time L by selecting the edge

with maximum value Q(s,a) plus u(s,a),

 at = argmaxa�Q(st, a) + u(st, a)� (1)

where u(s, a) = cpuctP(s, a) �N(s)
1+N(s,a)

 and cpuct is a constant that determines the exploration tendency (If
the node has not been created, Q equals to 0). The strategy of search is to select moves with low visit
count and high prior probability initially, and gradually prefer moves with high action value.

2. Expansion
If sL is not the end state of the game, sL will be expanded, and the probabilities pσ for each action

computed by the policy networks are stored as prior probabilities. Else, the result will be obtained and
go on to the fourth step.

3. Evaluation
We add the new node gained above to a queue waiting for the value networks’ evaluation, only if it

has been doing so previously. In addition, this game will be simulated to the end by rollout policy,
at~pπ(∙ |st).

4. Backup
The statistics of sL gained by the value networks and rollout policy are Backpropagated:

 Nv(st, at) ← Nv(st, at) + 1 (2)

 Wv(st, at) ← Wv(st, at) + vθ(sL) (3)

 Nr(st, at) ← Nr(st, at) − nvl + 1 (4)

 Wr(st, at) ← Wr(st, at)+nvl + zt (5)

 Q(s, a) = (1 − λ)Wv(s,a)
Nv(s,a) + λWr(s,a)

Nr(s,a) (6)

We weight the results of value and rollout simulation, and add them up with weighting parameter λ
to get Q.

After every simulations are completed, AlphaGo will choose the most visited move as the
determination:

 a = argmaxN(s, a) (7)

2.1.3. The training of policy networks, value networks and rollout policy supervised learning of policy
networks. At the training pipeline’s first step, AlphaGo try to learn to predict human experts’ moves in
the Go games by supervised learning (SL) [9-13]. The policy networks are trained on a data set of 30
million state-action pairs (s,a) from human experts’ games, with the use of stochastic gradient descent
to maximize the likelihood of move a at states s made by the human experts.

 ∆σ ∝ ∂logpσ(a|s)
∂σ

 (8)

As a result, using all input features, it has the accuracy of 57.0%, and 55.7% with only raw board
position and move history as inputs.

2.1.4. Reinforcement learning of policy networks. The training pipeline’s second step focuses on
improve the policy networks which we gained at the first stage by policy gradient reinforcement
learning (RL) [14,15]. With the same structure and initialization as SL policy networks, the RL policy

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

393

https://cn.bing.com/dict/search?q=focus%20on&FORM=BDVSP6&cc=cn

networks are trained by play games between the newest policy networks and a previous randomly
selected iteration of the policy networks, which is expected to strengthen the networks and prevent
overfitting to the networks meanwhile. There is a reward function r(s), which equals to 0 for all non-
terminal time steps t < T.

The result zt = ±r(sT) equals to +1 for winning, and -1 for losing at each time step t, whereafter
weights are undated by stochastic gradient ascent to maximize expected outcome.

 ∆ρ ∝ ∂logpρ�at�st�
∂ρ

zt (9)

2.1.5. Reinforcement learning of value networks. At the training pipeline’s final step, AlphaGo
centers around evaluation to the position, which is used to predict the outcome of position s with the
game-playing method of policy p made by policy networks [16-18].

 Vp(s) = E[zt|st = s, at…T~p] (10)

And we approximate the value function with weight θ to vp(s) and the perfect(ideally) value
function v∗(s):

 Vθ(s) ≈ vpρ(s) ≈ v∗(s) (11)

The value function is trained with state-outcome pairs (s,z), with the use of stochastic gradient
descent to minimize the mean squared error(MSE) between vθ(s) and relevant outcome z.

 ∆θ ∝ ∂vθ(s)
∂θ

�z − vθ(s)� (12)

In addition, to avoid overfitting, 30 million distinct positions are sampled from different games
played by RL policy networks and itself until the game ended.

2.1.6. Rollout policy. Similar to the policy networks, the rollout policy is trained from 8 million state-
action pairs (s,a) from human experts’ games to maximize likelihood with the use of stochastic
gradient descent.

Finally, rollout policy achieves the accuracy of 24.2%.
In the competition, the parameter of policy networks comes from SL policy networks for its test

result. It might because the policy network learns from human experts tend to find more possible move
than RL policy networks.

2.2. AlphaGo zero
The emergence of AlphaGo has made the history as it is the first time that a computer program had
beaten a human professional player successfully in Go game with full-sized broad, but there are still
some problems with AlphaGo. In 2017, the developer team reported a new program AlphaGo Zero in
their new article: <Mastering the game of Go without human knowledge>[6], which is the new version
of AlphaGo with the similar architecture but totally different training methods.

As its name, AlphaGo Zero studies Go completely without human’s understanding and experience.
Specifically in two aspects:

1. Unlikely to AlphaGo, the inputs to AlphaGo Zero only contain komi and history features, in
order not to break the rules as repetitions are forbidden, but no other features to represent ladder,
liberties and so on as AlphaGo has.

2. No human’s experience is used throughout the training process, AlphaGo Zero studies Go only
by itself.

2.2.1. Basic architecture and parameters. Similar to AlphaGo, AlphaGo Zero consists of policy
networks, value networks, and MCTS, but value networks and playout policy are replaced by only
value networks.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

394

Another difference is that the inputs to the policy and value network do not contain human
understanding but only history features and komi.

2.2.2. The way of AlphaGo zero running. AlphaGo Zero runs similarly to AlphaGo, but with better
value and policy networks, it replaces rollout policy with only value networks.

The value of the Q is only depended on the assessment of value networks. Its traversing obeys at =
argmaxa(Q(st, a) + u(st, a)), and finally choose the most visited move as the determination: a =
argmaxN(s, a), the same as before.

2.2.3. The training of policy networks and value networks. As the same to its name of paper of
AlphaGo Zero, it was trained by playing with itself but not from human expert’s game.

In the beginning, we the initialize neural networks with random weights θ0. At each subsequent
iteration, it generated game by self-playing, which executed the previous iteration of neural networks
and played a move by sampling the search probabilities. When both players pass or the game exceeds
the maximum length allowed, the game terminates at step T, and then it is provided with a reward of
rT ∈ {+1,−1}, which means winning or losing. Each t step is stored as the data of the form of
(st,πt, zt). At the same time, the neural network is trained from the data (s,π, z)sampled uniformly
from we got above.

To be specific, the parameters θ of the networks are updated by gradient descent to minimize the
loss function, which is the sum of mean-squared error and cross-entropy losses:

 L = (z − v)2 − πTlogp + c‖θ‖2 (13)

where c‖θ‖2can help prevent overfitting.
AlphaGo Zero surpasses AlphaGo Lee only after 36 hours and defeats it by 100 to 0 with worse

hardware.

2.3. KataGo
KataGo [19] is a open-source Go engine with many improvements to accelerate learning, trained by
people all over the world providing resource to let it play with itself. Besides basic function of playing
Go games, it can also predict score and territory, play handicap games reasonably, and play at various
board sizes and rules with the same neural network.

KataGo’s overall architecture resembles AlphaGo Zero, consists of policy networks, value
networks, and MCTS, but there are some improvement measures in training and new modules added
to KataGo to add new features and accelerate learning to a large extent.

2.3.1. Before KataGo. After AlphaGo Zero, there are some new ways mentioned to help improve the
strength of Artificial Intelligence Go.

To help discover the unexpected moves, noise is added to the policy prior at the root in Artificial
Intelligence Go, and in KataGo:

 P(c) = 0.75Praw(c) + 0.25η (14)

where Praw (c) is the initial probability calculated by policy networks, and η follows Dirichlet
distribution with parameter α = 0.03*192/N(c) on legal moves and N is the total number of legal
moves.

The neural networks which guide search are a convolutional residual net with a preactivation
architecture [20], which means this kind of AIGo began with small net and progressively increased its
size, concurrently training the larger size on the data same as the smaller size version had, and switch
when its average loss caught up to the small size.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

395

2.3.2. Major general improvements. One of the main contributions of KataGo is present various
domain-independent improvements that might directly be transplanted to other AlphaZero-like [21]
learning or to reinforcement learning more generally.

1. Considering that there is strong possibility to be efficient for training to have more games
although their quality is slightly lower, playout cap randomization is introduced to improve the way of
training. On a small proportion p of moves are decided by full searches, stopping after having reached
N nodes, with all other search with a much smaller cap of n < N. Only moves performing full searches
are added to the training data. And fast searches are disabled Dirichlet noise and other methods in
exploration to strengthen the quality.

2. There is no reason to expect the optimal level of playout dispersion in MCTS to also be optimal
in real value estimation or just after longer search. So forced playouts is introduced to KataGo to
ensure each child c of the root receives a minimum number of searches:

 Nforced(c) = (kP(c)∑ N(c′ c′))
1
2 (15)

3. Global pooling adding to the neural networks enables the convolutional layers to work at the
condition on global context [22], which is impossible for convolutional layers with limited perceptual
radius.

4. A new channel output from the policy head is added to predict the opponent’s reply on the
following turn [23]. We add a term to the loss function:

 −ωopp ∑ πopp(m) log �π�opp(m)�m∈moves (16)

where πopp will record the the turn after the current turn as the policy target, and π�opp is the
prediction of πopp made by neural network.

2.3.3. Major domain-specific improvements. Some domain-specific methods are found to have
nontrivial further gains.

1. Auxiliary Ownership and Score Prediction Targets
These new components are joined to KataGo [24]. To be specific, the output from decomposing the

result of the game into some finer variables and three additional terms are added to KataGo:
 Ownership loss:

 −wo ∑ ∑ o(l, p)log (o�p∈players (l, p))l∈board (17)

where o(l,p)∈{0, 0.5, 1} indicates whether l finally belongs to p, or is shared, o� is the prediction of o,
and b∈[9,19] is board’s width, wo=1.5/b2.
 Score belief loss(“pdf”):

 −wspdf ∑ ps(x) log�p�s(x)�x∈possible scores (18)

where ps is the final score difference as the form of one-hot encoding, p�s is the prediction of ps, and
wspdf = 0.02.
 Score belief loss(“cdf”):

 Wscdf ∑ (∑ ps(yy<x) − p�s(y))2x∈possible scores (19)

where wscdf = 0.02. While “pdf” loss rewards predicting the score accurately, “cdf” loss pushes the
quality to be closed to the final score.

2. Go-specific Features
Besides raw features showing the state of the board, the rules, the history and komi, some game-

specific higher-level features are also input to KataGo’s network, including liberties, pass-alive
regions, ladders.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

396

Furthermore, KataGo uses two minor Go-specific ways to optimize the networks. One is to forbid
moves in pass-alive territory after a certain number of consecutive passes. The other one is to add a
tiny bias to favor passing when passing and continuing play might give arise to identical scores. These
two methods are to reduce the time required.

According to the benefit that domain-specific Improvements brings, it suggests a general meta-
learning heuristic: adding subcomponents to predict of desired targets could improve training
significantly. In addition, game-specific input features will also improve training greatly.

2.3.4. Achievement. To compare the impact of the different techniques mentioned above, there is a
small experiment in which shorter training runs with various components removed. The summary
below shows the comparison (See Table 1):

3. Discussion
1. The accuracy of neural network is not high enough, which means Artificial Intelligence Go need to
search for the subsequent moves to find the better choice. But the search breadth and depth are too
large to use the traditional search methods like max-min search used in other AI chess, therefore
Monte Carlo tree search is here to solve it.

2. In AlphaGo, the input to the neural network contains not only the state of the board and history,
but also with human’s understanding like ladder and liberties. But in AlphaGo Zero, the input only
includes the board and history, and it learned Go completely by itself. It interprets its title ‘without
human knowledge’ perfectly. However, as <Accelerating Self-Play Learning in Go>[19] mentioned,
from a practical perspective, the go-specific higher-level features input to neural networks will
improve the training greatly.

3. Though in self-played training, whether the move is good or bad only depends on the result, it
can be solved with a mass of games for symmetry.

4. The neural network trained as a whole rather than trained one after another like AlphaGo will
improve training and increase the ceiling. Convolutional residual net with a preactivation architecture
will help achieve this outcome also.

4. Conclusion
As computer science and hardware technology are developing rapidly, AI plays an increasingly
significant role in various fields. Specifically, in Go, the level of AI keeps upgrading and finally
outperform humans in 2017. But it is not the ultimate form of Go and there is still a lot of room for
AIGo to improve. This paper has presented the details of three influential AIGo about their structure
and training methods. Their Basic Architecture consists of three main parts: policy networks, value
networks and Monte Carlo tree search. Policy networks are in charge of outputting prior probability
distribution over all legal moves. Value networks predict the outcome from the position of games. And
MCTS performs lookahead search, which can compensate for the inaccuracy of neural network.
AlphaGo Zero prove that this neural network inserting in MCTS is enough for AI to learn by itself to
reach a level beyond that of human beings. In KataGo, many improvements are applied, and from the
comparison we can see these improvements have exactly help a lot in training. Furthermore, some of

Table 1. Factors are based on shorter runs.

Removed Component Elo Factor
Main (baseline model) 1329 1.00x

Playout Cap Randomization 1242 1.37x
Forced Playouts and Policy Target Pruning 1276 1.25x

Global Pooling 1153 1.60x
Auxiliary Policy Targets 1255 1.30x

Auxiliary Ownership and Score Prediction Targets 1139 1.65x
Go-specifific Features 1168 1.55x

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

397

the improvement ways, like playout cap randomization, global pooling and auxiliary ownership and
score targets, are worth being doing further research for their innovation and significant improvements
bringing for program performance. Nevertheless, the variations in Go are too much for the present
AI’s structure to get well know all of them, and it seems impossible for it to reach the ultimate Go
level by keeping going in this way. Though AI has reached a high level in Go with the help of MCTS,
in other more complicated games with the characteristics of larger search space, like Real-Time
Strategy Game (RTS), it cannot work as well as we expect, so it needs upgrading in order to adapt
other fields with different characteristics. In the future, the ways that KataGo uses to accelerate
learning have the value of being studied, and we expect them to be enlightening to developers in other
fields.

References
[1] Persson C G A, Erjefält J S, Korsgren M, et al. 1997 The mouse trap[J]. Trends in

pharmacological sciences, 18(12): 465-467.
[2] Allis L V. 1994 Searching for solutions in games and artificial intelligence[M]. Wageningen:

Ponsen & Looijen.
[3] Van Den Herik H J, Uiterwijk J W H M, Van Rijswijck J. 2002 Games solved: Now and in the

future[J]. Artificial Intelligence, 134(1-2): 277-311.
[4] Schaeffer J. 2000 The games computers (and people) play[M]//Advances in computers.

Elsevier, 52: 189-266.
[5] Silver D, Huang A, Maddison C J, et al. 2016 ing the game of Go with deep neural networks

and tree search[J]. nature, 529(7587): 484-489.
[6] Silver D, Schrittwieser J, Simonyan K, et al. 2017 ring the game of go without human

knowledge[J]. nature, 550(7676): 354-359.
[7] Coulom R. 2006 ient selectivity and backup operators in Monte-Carlo tree

search[C]//International conference on computers and games. Springer, Berlin, Heidelberg,
PP72-83.

[8] Kocsis L, Szepesvári C. 2006 Bandit based monte-carlo planning[C]//European conference on
machine learning. Springer, Berlin, Heidelberg, PP282-293.

[9] Coulom R. 2007 Computing “elo ratings” of move patterns in the game of go[J]. ICGA journal,
30(4): 198-208.

[10] Stern D, Herbrich R, Graepel T.2006 Bayesian pattern ranking for move prediction in the game
of Go[C]//Proceedings of the 23rd international conference on Machine learning. PP873-
880.

[11] Sutskever I, Nair V. 2008 Mimicking go experts with convolutional neural
networks[C]//International Conference on Artificial Neural Networks. Springer, Berlin,
Heidelberg, PP101-110.

[12] Maddison C J, Huang A, Sutskever I, et al. 2014 Move evaluation in Go using deep
convolutional neural networks[J]. arXiv preprint arXiv:1412.6564.

[13] Clark C, Storkey A. 2015 Training deep convolutional neural networks to play
go[C]//International conference on machine learning. PMLR, PP1766-1774.

[14] Williams R J. 1992 Simple statistical gradient-following algorithms for connectionist
reinforcement learning[J]. Machine learning, 8(3): 229-256.

[15] Sutton R S, McAllester D, Singh S, et al. 1999 Policy gradient methods for reinforcement
learning with function approximation[J]. Advances in neural information processing
systems, P12.

[16] Schraudolph N, Dayan P, Sejnowski T J.1993 Temporal difference learning of position
evaluation in the game of Go[J]. Advances in neural information processing systems, P6.

[17] Enzenberger M. 2004 Evaluation in Go by a neural network using soft
segmentation[M]//Advances in Computer Games. Springer, Boston, MA, PP97-108.

[18] Silver D, Sutton R S, Müller M. 2012 Temporal-difference search in computer Go[J]. Machine

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

398

learning, 87(2): 183-219.
[19] Wu D J. 2019 Accelerating self-play learning in go[J]. arXiv preprint arXiv:1902.10565.
[20] He K, Zhang X, Ren S, et al. 2016 Identity mappings in deep residual networks[C]//European

conference on computer vision. Springer, Cham, PP630-645.
[21] Silver D, Hubert T, Schrittwieser J, et al. 2018 A general reinforcement learning algorithm that

masters chess, shogi, and Go through self-play[J]. Science, 362(6419): 1140-1144.
[22] Hu J, Shen L, Sun G. 2018 Squeeze-and-excitation networks[C]//Proceedings of the IEEE

conference on computer vision and pattern recognition. 7132-7141.
[23] Tian Y, Zhu Y. 2015 Better computer go player with neural network and long-term

prediction[J]. arXiv preprint arXiv:1511.06410.
[24] Wu T R, Wu I C, Chen G W, et al. 2018 Multilabeled value networks for computer Go[J]. IEEE

Transactions on Games, 10(4): 378-389.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230845

399

