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Abstract. Robots have emerged as a pivotal element in enhancing firefighting operations, offering a blend
of efficiency and safety to human responders. This paper delves into the development of a path planning
strategy for robots navigating through fire scenarios. Particularly we fused the Dijkstra Algorithm and
Genetic Algorithm (GA). Our methodology commences with a simplified yet comprehensive definition of
the fire environment, incorporating factors such as obstacle height, surface roughness, and fire sources.
The environment and surroundings are represented by a 2.5-dimensional grid map. On the other hand,
the robot’s traversal and ascent capabilities modeled to reflect varying velocities across different terrains.
The Dijkstra Algorithm is subsequently utilized to identify the optimal path from the starting point to
the destination, ensuring a balance between minimal traversal time and reduced thermal exposure. Our
results, demonstrated through MATLAB simulations, reveal a marked improvement in path planning when
GA optimization is applied. The comparative analysis across three scenarios underscores the versatility
and effectiveness of our approach, showcasing a significant reduction in both traversal time and thermal
exposure. Index Terms—Robots, Firefighting, Path planning, Dijkstra, GA
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1. Introduction
Fires pose a significant threat to the safety of people’s lives and property. According to statistics from
the National Interagency Fire Center (NIFC), there were 56,580 wildfires across the United States in
2023, burning 2.7 million acres of land [1]. As a result, the application of robots in firefighting has
become a critical research area within the robotics industry. These robots not only enhance firefighting
efficiency but also contribute to the safety of firefighters. This paper presents a method for optimizing
and constructing a cost map using Genetic Algorithm (GA) and Dijkstra Algorithm under known fire
conditions. Comparative verification demonstrates the superiority, feasibility, and versatility of this
approach [2].
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2. METHODS AND METHODOLOGY
2.1. Definition of fire environment
To mitigate the computational complexity, this paper implements the following simplifications for the
fire scenario and the robot:

(i) The fire environment map only includes height of obstacle, surface roughness, and fire sources.
(ii) The robotic system is endowed with the capability to ascend obstacles of a certain height. However,

it exhibits varying velocities when traversing surfaces of different roughness and ascending
obstacles of varying heights.

(iii) A 2.5-dimensional grid map is utilized to represent the fire environment, concurrently mapping the
robot as a singular point within the map.

For instance: The value of map(x, y).h represents the height of obstacle in cell(x, y); the value
of map(x, y).temp represent the temperature of cell(x, y) and the value of map(x, y).r represent the
roughness of celll(x, y).

Considering the robot exhibits different velocities when ascending the edge of an obstacle and moving
along the surface of the same obstacle, despite the identical elevation values at these times, this paper
use the variance of height within the grid map to represent terrain fluctuations. Let denote the height at
position in the height map. The local mean and local variance can then be calculated as follows:

2.1.1. Local Mean

µ(x, y) =
1

4

1∑
i=0

1∑
j=0

map(x+ i, y + j).h (1)

Where, µ(x, y) represents the average of the height value at position (x, y) and all the height values
within its 2× 2 neighborhood.

2.1.2. Local Mean of Squared Heights

E
[
map2(x, y).h

]
=

1

4

1∑
i=0

1∑
j=0

map2(x+ i, y + j).h (2)

Where, E
[
h2(x, y)

]
denotes the average of the squared height values at position (x, y) and within its

2× 2 neighborhood.

2.1.3. Local Variance
σ2(x, y) = E

[
map2(x, y).h

]
− µ2(x, y) (3)

Where, σ2(x, y) represents the local variance of the height values at position (x, y). It is obtained by
calculating the difference between the mean of the squared heights and the square of the local mean.

For better readability of mathematical symbols, in the following text, we will use hvar(x, y) to
represent σ2(x, y). The physical significance of hvar(x, y) is the degree of height variation at cell(x, y).

2.2. Construction of costmap
In the pursuit of facilitating our research within the relatively straightforward MATLAB environment
and to diminish the computational time required to attain accurate experimental outcomes, this paper
innovatively introduces the variable time, which signifies the duration the robot expends traversing each
cell within the map.

time(x, y) = α · map(x, y).r

vf
+ β · 1 + hvar(x, y)

vh
(4)
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Where, vf denotes the robot’s velocity performance on surfaces with varying degrees of roughness,
while vh signifies the robot’s velocity performance when ascending obstacles of differing heights. The
coefficients α and β serve as weights that can be manually adjusted through simulation experiments.

By manipulating the robot’s traversal over surfaces with diverse roughness levels and its ascent of
obstacles with varying heights, and subsequently measuring the requisite time, these values can be
estimated through an analysis of the simulation data.

Following manual simulation experiments, this paper has derived the specific values for the
parameters α, β, vf , and vh, which are 1, 4, 1, and 1, respectively. Consequently, the expression for
time is as follows:

time(x, y) = map(x, y).r + 4 · (1 + hvar(x, y)) (5)

Ultimately, within the costmap, the cost value of each cell can be succinctly defined by the following
formulation:

cost(x, y) = w1 · time(x, y) + w2 ·map(x, y).temp (6)

Where, w1 and w2 symbolize the relative significance of time and temperature, respectively, on the
costmap’s cost value. These weights can be optimized through the Genetic Algorithm (GA) to be
discussed later, which aims to achieve an optimal balance between the effects of time and temperature
on the costmap. This optimization process is designed to assist the robot in planning a path that not
only minimizes the time taken from the starting point to the destination but also maximally reduces the
thermal exposure experienced by the robot during the traversal.

2.3. Dijkstra algorithm for path planning
The Dijkstra algorithm is a greedy algorithm used to solve the single-source shortest path problem. It
is capable of finding the shortest path from a starting node to all other nodes in a graph [3]. The main
principle of the algorithm is to maintain a set of unprocessed nodes and gradually expand the known
shortest paths until the shortest path to the target node is found [4]. After obtaining the cost map, we
use the Dijkstra algorithm to find the optimal path. Compared to common used algorithms like PRM,
this algorithm returns a concrete result which is good for optimization. The pseudo code is shown in
followings [5]:

2.4. D.Application of Genetic Algorithm (GA)
The Genetic Algorithm (GA) is a search algorithm that simulates the principles of natural selection and
genetics to solve optimization and search problems [6, 7]. The alternative or potential solutions can be
improved by GA through a process could mimicking biological evolution, which, in particular, includes
inheritance, mutation, selection, crossover and so on. GA performs a global search across the entire
solution space rather than being confined to local regions, and it can evaluate the fitness of multiple
individuals in parallel, which facilitates the discovery of a global optimum or near-optimal solution [8].

The fitness function plays a crucial role in GA, serving as the metric for evaluating the quality of
individuals (chromosomes), thereby determining the direction of the search and the effectiveness of
optimization [9,10]. In this project, we define the fitness function based on the cost map and the optimal
path as follows:

We calculate the optimal path P from the starting point to the endpoint using the Dijkstra algorithm.
The path consists of a series of coordinate points (ri, ci):

P = {(r1, c1), (r2, c2), ..., (rn, cn)} (7)

The fitness value is calculated along the path P as the sum of the temperature and time values at each
point, As shown in the following formula:

fitness =

n∑
i=1

[
λ1 ·map(ri, ci).temp+ λ2 · time(ri, ci)

]
(8)
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Algorithm 1 Dijkstra’s Algorithm
Require: Graph, source
Ensure: path, distance[target]

1: for each node in Graph do
2: distance[node]←∞
3: previous[node]← UNDEFINED
4: end for
5: distance[source]← 0
6: priority queue← {source}
7: while priority queue is not empty do
8: current node← node with smallest distance
9: if distance[current node] =∞ then

10: break
11: end if
12: for each neighbor of current node do
13: new distance← distance[current node] + edge weight(current node, neighbor)
14: if new distance < distance[neighbor] then
15: distance[neighbor]← new distance
16: previous[neighbor]← current node
17: priority queue.add(neighbor)
18: end if
19: end for
20: priority queue.remove(current node)
21: end while
22: path← [ ]
23: current node← target
24: while previous[current node] is defined do
25: path.prepend(current node)
26: current node← previous[current node]
27: end while
28: return path, distance[target]

Where, λ1 and λ2 are weight coefficients. Considering the difference in the order of magnitude of time
and temperature in the above formula, this paper sets the values to 1 and 9 respectively [11].

As shown in the Figure 1 , we visualize the genetic algorithm using a flowchart.

3. Result
To clearly demonstrate the advantages of applying GA and the rationality of the cost map definition, we
compare the results under three different scenarios:

• Case 1: Cost map defined solely based on roughness and height variance, without GA optimization.
• Case 2: Cost map established based on temperature, roughness and height variance, w1 and w2

initialized to 1, without GA optimization.
• Case 3: Cost map established based on temperature, roughness, and height variance, with GA

optimization.

Using MATLAB to simulate these three scenarios, we obtain different outcomes:
Initially, MATLAB was utilized to generate visual representations of the map’s roughness,

temperature, and elevation, as depicted in Figures 2, 3, and 4, respectively.
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Figure 1. Genetic Algorithm Flowchart

Figure 2. Height map

Figure 3. Roughness map
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Figure 4. Temperature map

Finally, three distinct paths corresponding to different costmaps are revealed in Figures 5, 6, and 7, as
the executing result of case 1, 2, and 3. By integrating the visual maps to observe the characteristics of the
paths, it can be discerned that in case 1 (Figure 5), the robot considered only the height variance, resulting
in a path with the minimum total time. However, this path directly traverses the high-temperature center,
which is not the desired outcome in a fire scene; in case 2 (Figure 6), since the Genetic Algorithm (GA)
was not employed to optimize the weights ω1 and ω2 in the cost value, the constructed costmap closely
resembles the temperature map, largely neglecting the impact of height variance. Consequently, the
path planned by the robot completely circumvents the high-temperature area, leading to a significantly
increased time along the entire path, which is also not the desired outcome; in case 3 (Figure 7), with the
optimization by the GA, it is evident that the constructed costmap effectively integrates the influence of
height variance and temperature on the cost value. The planned path avoids the high-temperature areas
and crosses the obstacles with low height values at the same time. This not only significantly reduces the
cumulative temperature exposure along the entire path for the robot but also substantially shortens the
time required to complete the total path.

Figure 5. Path on costmap Case 1

By examining a table (Table 1), the variance in the final value (hereinafter denoted as ’fval’) for the
robot upon completion of the paths corresponding to the three distinct cases becomes more apparent. It
is evident that the fval for case 3 is markedly less than that of case 2, and the fval for case 2 is also less
than that of case 1. This observation directly substantiates the viability and rationality of the approach we
have proposed within the context of a simplified fire environment scenario. Specifically, it demonstrates
the capability of the method to enable the robot to circumvent the high-temperature central zone while
concurrently reducing the overall time required to traverse the designated path to the greatest extent
possible.
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Figure 6. Path on costmap Case 2

Figure 7. Path on costmap Case 3

Table 1. Final value of Case1,2,3
Case 1 Case 2 Case 3

fval 2306.33 2281.98 2042.69

4. CONCLUSION
This project raises a method to construct the cost map based ib a grid map incorporating height,
roughness, and fire sources, and optimized it using a Genetic Algorithm (GA). By analyzing and
calculating the variance in terrain height and the impact of temperature, we effectively planned an
optimal path for the quadruped robot within a simulated fire environment [12]. Our projects verified the
effectiveness of combining height and heat based cost map and GA algorithm successfully, specifically
in fire environment. This lays a solid foundation for future research and practical applications.

5. DISCUSSION
The improving points of our paper are the lack of simulation and map information.To the first point, basic
ROS simulation has been achieved, which is able to calculate the path based on given algorithm, follow
given way points and record the time from the start to the end [13]. The full simulation can show in the
following paper. To the second point, more featured maps are being built to improve the effectiveness of
the GA algorithm [14].

To deply our algorithm on the robot, we use simulink and ROS to simulate the running situation and
test our algorithm efficiency on different map, as shown in figure 8, 9.

However, we get in trouble with combing ROS and GA algorithm in simulink. Therefore, we decide
to rewrite our program in python code, so that we can do GA based on ROS-simulation time.
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Figure 8. Simulation in Simulink

Figure 9. Simulation in ROS
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