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Abstract: The monitoring of oxygen saturation (SpO2) for premature babies carries great 

importance, due to the highly required accuracy of oxygen therapy, which is used to prevent 

premature babies’ dyspnea. Motion artifacts, however, can influence the quality of the photo-

plethysmograph (PPG) signal, causing imprecision. Through this study, the accuracy of PPG 

detection for newborns can be improved by applying the Kalman filter to restitute motion 

artifacts by using an accelerator and a gyroscope to build reference signals and adaptively 

adjust the parameters of the Kalman filter. A quantitative study is used in this investigation 

with relative simulations of Heartbeat Rate (HR) estimation based on filtered PPG signals. 

The results, on average, show an absolute error of 1.69 BPM, a relative error of 1.82%, and 

a standard deviation of 9.37 BPM. The great accuracy of the algorithm can improve SpO2 

monitoring for newborns, further lowering the working pressure for medical workers. On the 

other hand, the standard deviation is relatively high, indicating that further work, such as 

improving the preprocess of signals or introducing machine learning, should be paid attention 

to. 

Keywords: Pulse Oximeter, PPG Signal, Motion Artifact, Accelerator, Gyroscope, Kalman 
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1. Introduction 

The monitoring of oxygen saturation (SpO2) for premature babies carries Photo-plethysmograph 

(PPG) signals are widely used in monitoring patients’ oxygen saturation (SpO2) and Heartbeat Rate 

(HB), which are detected by pulse oximeters [1]. Due to the accuracy required by oxygen therapy for 

premature infants, PPG signals that carry high quality are essential to the monitoring of infants’ health 

conditions. Motion artifacts caused by patients’ physical movements, however, add obvious noise to 

the clean PPG signals in the long-term monitoring of premature babies’ SpO2 and HR. Newborn 

infants’ uncontrollable body movements can cause severe motion artifacts and affect the accuracy of 

measurement [2]. Such unavoidable imprecision can result in both overestimated and underestimated 

outcomes [3], leading to unreal alarms. Thus, to improve the quality of PPG signals during infants’ 

continuous health monitoring, efforts to remove motion artifacts from PPG signals have been made. 

Through this paper, the development of artifact resistance techniques is comprehensively reviewed 

in section 2. Based on the review, the methodology of a Kalman filter-based algorithm that 
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incorporates the use of both accelerator and gyroscope to eliminate motion artifacts is introduced in 

the third section, involving both the description of algorithms and related simulations. The results of 

this study simulations will be discussed in section 4. 

Based on the results, the quality of PPG signals is ensured. Further improvement in medical 

monitoring for newborns can also be made. Medical workers will relatively have less stress inside the 

NICU. Additionally, the theory and work can be continuously used in health monitoring by providing 

a new method to design a multi-detector monitoring system involving adaptive adjustment. 

2. Literature Review 

This section reviews different means to remove motion artifacts from PPG signals. The efficiency of 

a multi-detector-based pulse oximeter to eliminate effects caused by patients’ physical movements is 

shown.  

As proposed by Hertzman [4], the PPG signal carries great significance and popularity in today’s 

medical monitoring. Through years of development, imprecisions, such as different kinds of noises, 

can be resolved with both software and hardware methods. Lee et al. [5] successfully decreased the 

effects caused by baseline drift in SpO2 monitoring with the algorithm called adaptive threshold peak 

detection (ATPD). However, motion artifacts cannot be efficiently removed through ATPD. To tackle 

motion artifacts, Poets & Stebbens [6] used the Edentec Motion Annotation System to remove motion 

artifacts, while Cho et al. [7] utilized methods such as dual-trace detection, DC-level continuity 

monitoring, and St/Dt ratio analysis to ensure clean PPG signals in the presence of motion artifacts. 

Zahari et al. [8] developed an algorithm to deal with distribution patterns in SpO2 monitoring to 

eliminate motion artifacts. Banik et al. [9] built an algorithm in a wearable reflection-type pulse 

oximeter system to compensate for motion artifacts, and carefully designed light modules to improve 

their design. While these studies provided several practicable ways to decrease imprecision caused 

by motion artifacts, they focused solely on software solution without involving multi-detector design 

to provide reliable and meantime reference signals. Harrison et al. [10] proved that the adaptive noise 

cancellation algorithm (ANC), which involved other sensors like an accelerometer, efficiently 

corrects the contaminable PPG signal. However, ANC fails to remove motion artifacts if a close main 

frequency component to the heartbeat rate is contained by the motion artifacts. Wu et al. [11] used an 

accelerometer to design their pulse oximeter by directly removing intervals of PPG signals involving 

physical movements, but their software design was not powerful enough. ATPD, ANC, and adaptive 

spectrum noise cancellation approach (ASNC) were tested by Yang et al. [12], which showed 

accuracy and resistance to the effects of similar close main frequency component that makes ANC 

fail to gain clean PPG signals. However, the crucial filter of ASNC was simply LMS, which had a 

lack of more powerful and complicated algorithm design to handle complex noise. Lee et al. [13] 

compared the Kalman smoother to traditional filters, demonstrating its superior performance. 

However, they only used an accelerator to build the reference signal, which might cause 

incompleteness in the noise cancellation. 

Based on the review, an accelerator and a gyroscope are added into the hardware design to improve 

the capability of the Kalman filter, providing a new approach to adaptively improve the quality of the 

PPG signal by removing motion artifacts. 

3. Methodology 

In this section, the design of the algorithm is completely introduced. The algorithm that improves the 

quality of the PPG signal is used to evaluate the HR. Related simulations are also done and explained. 
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3.1. Overall Structure 

Figure 1 shows the complete process of the elimination of motion artifacts. It consists of three main 

parts: (1) Raw data collection and preprocessing; (2) adaptive filtering and (3) HR calculation and 

output. 

 

Figure 1: Flow chart of the Kalman Filter based algorithm 

Step 1: Raw data collection and preprocessing. Normally a pulse oximeter will detect a PPG signal 

through both red light and infrared light. Both raw PPG signals are collected in respect, and signals 

from the accelerator and the gyroscope are also detected. After the collection, all signals are smoothed 

by a sliding window. The size of the sliding window is 150, which is assumed to be nearly double of 

a normal person’s HR. A sliding window approach is employed to meticulously preserve the integrity 

of the original data and its physical features, which are crucial for the evaluation of results. 

Subsequent to the application of the sliding window, the square root of the signals obtained from the 

accelerometer and gyroscope is computed to ensure signal normalization. 

Step 2: Adaptive filtering. This research uses accelerator and gyroscope signal magnitudes to 

create the reference signal, which is later used to adaptively adjust the Kalman filter so that the motion 

artifacts can be effectively removed. After filtering, filtered red light PPG signal and filtered infrared 

PPG signal are outputted. 
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Step 3: HR calculation and output. We first combine two filtered PPG signals by calculating their 

weighted mean value. Next, we use peak detection to calculate the heartbeat rate.  

3.2. Adaptive Filtering and Related Calculations 

As mentioned before, all signals will be preprocessed through a sliding window, which has a size of 

150. For each signal, it is calculated by formula (1): 

x̂(t) =
1

N
∑ x(t − i)

N−1

i=0

(1) 

Where x̂(t) is the smoothed signal, N is the window size, and x(t) is the raw state variable. 

To normalize the acceleration signal, we take the square root to get the accelerator’s magnitude: 

a = √ax
2 + ay

2 + az
2 (2) 

Where a is the acceleration magnitude, and ax, ay, and az respectively represent the components 

of acceleration vectors in three axels. 

Similarly, the square root of angular momentum vectors of three axels are taken to get the angular 

magnitude g: 

g = √g
x
2 + g

y
2 + g

z
2 (3) 

Values of a and g play a role in adaptively adjusting the parameters of the Kalman filter by (1) 

increasing the process noise covariance Q  to the value of 1e − 4  and the measurement noise 

covariance R to 0.05, if at least one of a or g is greater than or equal to 1.5; (2) decreasing Q to 

1e − 5 and R to 0.01 if both a and g are less than 1.5. 

Kalman filter is designed to estimate and update x (t) to build clean signal. Formula (4) and (5) 

estimates the state variable: 

x̂(t|t − 1) = A ∙ x(t − 1) + B ∙ u(t) (4) 

P(t|t − 1) = A ∙ P(t − 1) ∙ A
T + Q (5) 

Where A is the state transition matrix, B is the control matrix,  u(t) represents the control 

input, P is the error covariance, and Q is the process noise covariance. To update the estimate PPG 

signal: 

K(t) = P(t|t − 1) ∙ C
T ∙ (C ∙ P(t|t − 1) ∙ C

T + R)
−1

(6) 

x(t) = x̂(t|t − 1) + K(t) ∙ (z(t) − C ∙ x̂(t|t − 1)) (7) 

P(t) = (I − K(t) ∙ C) ∙ P(t|t − 1) (8) 

Where K(t) is the Kalman Gain, z(t) is the observation value, R is the measurement noise 

covariance, I is the identity matrix, and C represents the measurement matrix. 

By adaptively using the Kalman filter to eliminate motion artifacts, two PPG signals are calculated 

by weighted mean and combined: 
ppg

combined
(t) = α ∙ ppg

1
(t) + (1 − α) ∙ ppg

2
(t) (9) 

Where ppg
1
(t) and ppg

2
(t) respectively represent the red-light PPG signal and the infrared-

light PPG signal. α is the weighting coefficient. The value of α can be adjusted based on the 

patients’ physical characteristics (i.e., colour of skin) or the quality of signals, but it is assumed that 

patients’ physical characteristics have no effect to the HR measurement, and α exactly equals to 0.5. 

Finally, combined PPG signal are used to calculate HR through peak detection: 

HRPPG =
60

mean(Tpeak)
(10) 

Where Tpeak is the time interval between adjacent peaks. 
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3.3. Simulation 

Database published by Mehrgardt et al. at PhysioNet provides PPG and ECG signals monitoring when 

patients are sitting, walking, and running, along with simultaneous accelerator and gyroscope signals. 

In this simulation, 5 cases of data of walking and running are chosen.  

The algorithm is designed on MATLAB 2021a, and this paper employs built-in functions (i.e., std 

for calculating standard deviation) to calculate three evaluations, including absolute error, relative 

error, and standard deviation (SD), by assuming the HR calculated by ECG signal is the patients’ real 

HR. The process can be represented as: 

Abs Error = |HRPPG − HRECG| (11) 

Rel Error =
Abs Error

HRECG

× 100% (12) 

σ = √
1

N
∑(ei − μ)2

N

i=1

(13) 

Where σ is the SD, ei is the error within each window, μ is the average value of errors, and N 

is the number of errors. 

4. Results and Discussion 

 

Figure 2: Signals detected during the elimination 
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Figure 2 (a) shows the results of the sliding window. Both PPG signals become smoother after the 

preprocessing. Although the smoothed signals still carry noises, the physical characteristics are 

greatly protected. 

Figure 2 (b) represents the HR estimation errors during the Kalman filtering. Relatively high 

density and degree of errors are reasonable since the patients are having intense physical movements. 

Those errors are recorded by the Kalman filter and are later used to update the estimated PPG signal 

and build clean PPG signals. 

Figure 2 (c) compares the filtered PPG signal with the raw data. Despite some incompatibilities, 

the physical information is well represented, and the signal is greatly smoothed. The accuracy of later 

HR calculations is ensured. 

Table 1: Results and errors of the algorithm compared to the HR calculated by ECG signal 

 𝐇𝐑𝐄𝐂𝐆 (𝐁𝐏𝐌) 𝐇𝐑𝐏𝐏𝐆 (𝐁𝐏𝐌) 𝐀𝐛𝐬 𝐄𝐫𝐫𝐨𝐫 (𝐁𝐏𝐌) 𝐑𝐞𝐥 𝐄𝐫𝐫𝐨𝐫 𝐒𝐃 (𝐁𝐏𝐌) 

Case 1 102.38 101.10 1.28 1.25% 7.27 

Case 2 92.76 92.67 0.08 0.09% 7.32 

Case 3 101.44 97.78 3.66 3.61% 10.78 

Case 4 75.70 73.48 2.22 2.93% 15.57 

Case 5 98.33 97.14 1.19 1.21% 5.90 

 

Table 1 shows the HR calculation and the error of the algorithm completely. On average, the 

algorithm has an absolute error of 1.69 BPM, a relative error of 1.82%, and an SD of 9.37 BPM. 

According to [12], the traditional ATPD algorithm has an absolute error of 2.29 BPM and a relative 

error of 8.38%, and the ANC approach has an absolute error of 1.79 BPM and a relative error of 

2.02%. The Kalman filter-based algorithm shows higher accuracy in both absolute and relative error 

calculation, reflecting that the approach works well to eliminate motion artifacts and successfully 

measure accurate HR by improving the quality of PPG signals. 

The relatively high SD, however, reflects the instability in the approach. This could be improved 

through a more complete preprocess and a more specific method to combine PPG signals. 

5. Conclusion 

In this paper, the Kalman filter is improved by using the accelerator and the gyroscope to remove 

motion artifacts from the PPG signal. The algorithm contains three main steps: data collecting and 

preprocessing, adaptive Kalman filtering, and HR calculation. 

The algorithm in this study is tested through simulation. On average, it has an absolute error of 

1.69 BPM, a relative error of 1.82%, and a SD of 9.37 BPM. Through the comparison with traditional 

ATPD and ANC approaches, the algorithm has relatively higher accuracy and acceptable stability. 

The issue of motion artifacts caused by a newborn’s uncontrollable physical movement can be 

reduced. Higher security of premature infants and lower working pressure of medical workers are 

reached. To consider the varying economic capacities of users, complex machine learning models 

were excluded, resulting in reduced costs but slightly higher errors. Future research could focus on 

developing cost-effective ways to incorporate accelerometer and gyroscope-based modeling, as well 

as refining the algorithm to improve the quality of PPG signals further while maintaining affordability 

in medical devices. 
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