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Abstract: Multispectral (MS) satellites generate a large volume of data and compression of 

this data is a critical task for remote sensing applications. Multitemporal images, captured at 

different dates over the same scene, contain temporal correlations that can be used for 

compression. This study is built on MultiTempGAN, a lightweight generative adversarial 

network (GAN) designed for multitemporal MS image compression, and investigates the 

impact of post-training model quantization on compression performance. By reducing the 

precision of model parameters to various bit-widths, quantization significantly reduces the 

model size while preserving image quality. Experiments conducted on Sentinel-2 satellite’s 

MS image pairs show that the quantized models achieve similar signal-to-noise ratio (SNR) 

and bit-per-pixel (bpp) metrics as the original model, with minimal impact on image 

reconstruction and compression efficiency. In addition, the reduction in model size facilitates 

more resource-efficient deployment, supporting large-scale remote sensing applications. 

These findings highlight the potential of model quantization to optimize deep learning-based 

compression techniques, enabling scalable and efficient handling of MS data without 

sacrificing accuracy and performance.  

Keywords: Multispectral image compression, Generative adversarial networks, Model 

quantization, Model compression, Multitemporal images. 

1. Introduction 

The increasing demand for remote sensing data has led to an exponential growth in the volume of MS 

and multitemporal image datasets. These datasets are essential for applications such as disaster 

monitoring, environmental change detection, and urban planning, where accurate and quick analysis 

of changes over time is critical. However, the large data sizes generated by MS imaging systems, 

particularly from spaceborne satellites, present significant challenges for storage, transmission, and 

processing. For instance, the Sentinel-2 satellite system produces terabytes of data every few days, 

resulting in rapidly growing archives expected to surpass 100 petabytes by 2030 [1]. Addressing these 

challenges requires advanced compression techniques that balance efficiency with image quality. 

Previous studies on MS and hyperspectral (HS) image compression have explored traditional 

methods such as wavelet-based transforms like JPEG2000 [2], predictive approaches like Least Mean 

Squares (LMS) and Recursive Least Squares (RLS) [3][4], and standards like CCSDS 123.0-B-2 [5]. 

Recently, deep learning techniques, including convolutional neural networks (CNNs), GANs, and 
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autoencoders, have shown significant advancements [6][7]. For example, GAN-based methods like 

Agustsson et al. [8] achieved high compression at low bit rates, while CNN frameworks such as 

Valsesia and Magli [9] provided efficient reconstruction aligned with standard compression protocols. 

These methods emphasize the growing role of deep learning in addressing the challenges of large-

scale MS data compression. 

Traditional MS image compression methods like JPEG2000 utilize spatial and spectral 

redundancies within individual images but often ignore temporal correlations between images 

captured at different times over the same region. Leveraging these correlations can improve 

compression performance. Advanced deep learning models, like Pix2Pix [10] and MultiTempGAN 

[11], use GANs to achieve high compression ratios for multitemporal MS data. Specifically, 

MultiTempGAN uses a GAN model to estimate the target image based on a given reference image. 

However, these models may face limitations due to large parameter sizes and high computational 

demands. Q-MultiTempGAN addresses these issues by reducing model size using fewer bits for 

representing weights, and maintains performance while enabling deployment in resource-constrained 

environments like satellite systems. 

2. Datasets and Image Preparation 

The performance of Q-MultiTempGAN was evaluated on the same three datasets used in the 

MultiTempGAN paper, each consisting of a single Sentinel-2 satellite MS image pair from different 

regions of Turkey captured across various time periods. These large MS image pairs were first up-

sampled to 10 m spatial resolution [12] using the SNAP toolbox [13] and then divided into 441 non-

overlapping patch pairs. Each patch pair consists of a reference patch (earlier-sensed image) and a 

target patch (later-sensed image) and every patch in the pair has dimensions of 512 × 512 × 12, which 

means that each patch pair has dimensions of 1024 × 512 × 12, where the left half represents the 

target image and the right half represents the reference image. Since visualizing all 12 channels of 

MS patch pairs is impractical, every three channels are combined to form a 1024 × 512 × 3 RGB 

representation, resulting in each MS image patch pair being represented as four RGB pairs. The goal 

of MultiTempGAN was to train a model using these patch pairs to predict the target image patch 

using the reference image patch. Q-MultiTempGAN achieves the same purpose while utilizing 

quantization techniques to compress the model and reduce computational requirements. Detailed 

dataset specifications are provided in Table 1. 

Table 1: Details of the datasets used in the proposed model. 

Dataset Sensing Region Sensing Dates (Reference - Target) 

MSI Pair-1 Between Eskişehir and Konya 28.09. 2020 – 18.10.2020 

MSI Pair-2 Between Denizli and Muğla 14.05.2021 - 19.05.2021 

MSI Pair-3 Between Balıkesir and İzmir 05.08.2020 - 25.08.2020 

3. Proposed Model: Q-MultipTempGAN 

As the main aim of Q-MultiTempGAN was to propose a more lightweight and still reasonably 

accurate model using GAN just like what the base study of this paper, MultiTempGAN, did for 

compression of multitemporal MS images by evaluating the performance metrics of approaches like 

U-Net [14], LinkNet [15], and ResNet [16] and proposing a customized version of Pix2Pix with lower 

complexity by reducing the number of convolutional layers and capability of accepting input images 

with 12 channels, in this study several quantization approaches were implemented, the observed 

results were stored and taken into comparison to choose the most appropriate approach over the same 
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datasets that were used in MultiTempGAN. The datasets and the details that were helpful in choosing 

the best quantization approach are mentioned in sections 2 and 4, respectively. 

Figure 1 illustrates the structure of the proposed Q-MultiTempGAN model, designed to address 

the limitations of MultiTempGAN. The generator, discriminator, and quantization processes are 

detailed, showcasing a framework that balances efficiency and performance. The model employs 

various quantization strategies, including uniform quantization and mixed precision quantization, 

applied at different bit-width configurations to significantly reduce memory and computational 

requirements while maintaining high image quality. Experiments on Sentinel-2 multitemporal MS 

datasets demonstrate that Q-MultiTempGAN achieves comparable SNR and bpp performance to 

state-of-the-art models, while enabling efficient deployment for large-scale remote sensing 

applications. This highlights the potential of advanced quantization methods as key tools for 

optimizing deep learning-based compression. 

 

Figure 1: The generator structure is shown at the top, with convolutional layers (conv1–conv5) and 

deconvolution layers (deconv1–deconv5). Batch Normalization layers (BN) are highlighted below, 

with the number of parameters above each layer and biases in orange. Storage requirements for 32-

bit parameters are shown in blue boxes, and post-quantization storage (8-bit symmetric quantization) 

in green. The discriminator structure is shown at the bottom left, where CONCAT denotes 

concatenation, and the final layer outputs real/fake probabilities. The quantization process at the 

bottom right includes Symmetric, Layer-Wise Precision (LWPQ), selective convolutional layer 

(Conv), and Stochastic Quantization, detailing operations for parameter selection.  

4. Quantization Approaches 

In this study, after retraining the original MultiTempGAN model and saving its final checkpoint, 

various post-training quantization approaches were investigated, and the model parameters were 

quantized to different bit rates using each method. The quantization techniques were categorized into 

two main groups: Mixed-Precision Quantization and Uniform Quantization. Key metrics, including 

SNR, bpp and Laplacian Mean Square Error (LMSE), were evaluated and compared against those of 
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the original MultiTempGAN. Based on these comparisons, the most suitable quantization approach 

and bit rate were determined. Detailed results and metrics for both MultiTempGAN and Q-

MultiTempGAN, along with the specifics of each quantization approach, are presented in the 

following subsections. 

The original MultiTempGAN model includes 2,560,252 generator parameters, distributed across 

various layers categorized into the encoder (conv1 to conv5), decoder (deconv1 to deconv5), and 

Batch Normalization (BN). During quantization, the total number of generator parameters remains 

unchanged, but each parameter is stored using fewer bits. 

All quantization approaches introduce additional parameters, referred to as side information, such 

as scales, zero points, and related values. These side information parameters are essential for 

reconstructing the original values during dequantization. Although small, their presence slightly 

impacts bpp. As defined in Equation 1, bpp is calculated as: 

 𝑏𝑝𝑝 =
#𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 × 𝑏𝑖𝑡_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + #𝑠𝑖𝑑𝑒_𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 × 32

#𝑝𝑖𝑥𝑒𝑙𝑠 × #𝑖𝑚𝑎𝑔𝑒𝑠
 (1) 

Here, #quantized_parameters represents the total number of generator parameters that are 

quantized using a specific approach. Each of these parameters is stored with a precision defined by 

#bit_precision, which indicates the number of bits used to represent each quantized parameter. 

#side_information refers to additional parameters, such as scales and zero points, required for 

dequantization, with each side information parameter stored using 32 bits. #pixels represents the total 

number of pixels in a single MS image, calculated as 512 × 512 × 12, and #images refers to the total 

number of images (patches) in the dataset, which is 441. The effect of side information on bpp 

depends on the quantization method and is elaborated upon in the following subsections. 

During the implementation phase, quantization process was performed using the following bit 

widths: 2, 4, 6, 8, 16, and 32. Quantizing to 32 bits provided a baseline comparison with the original 

model to assess the impact of quantization. Notably, 6-bit and 8-bit quantization offered the best 

balance between compression and accuracy, with key metrics such as SNR, bpp and LMSE closely 

approximating those of the original model. For simplicity, only the results for 6-bit and 8-bit 

quantization and the approaches with the best performance are included in Table 2 which presents 

the detailed results. 

This study utilized three distinct datasets, and performance metrics were averaged across them. 

For example, the SNR for the original MultiTempGAN model was calculated as 27.87, 26.43, and 

24.72 for MSI Pair-1, MSI Pair-2, and MSI Pair-3, respectively, that result in an average of 26.34, as 

reported in Table 2. This averaging approach was also consistently applied to LMSE, and across all 

evaluated models, including ResNet, LinkNet, and others, to ensure a comprehensive comparison. 

4.1. Uniform Quantization 

Uniform quantization involves quantizing all model parameters or weights to the same fixed bit width 

throughout the model [17]. This category of quantization is relatively simple to implement and is 

highly hardware-friendly due to its minimal customization requirements. However, it may have a 

negative impact in layers that are more sensitive to precision loss. In this study, the following uniform 

quantization methods were evaluated: Quantizing All Weights, Linear Quantization, Symmetric 

Quantization, Asymmetric Quantization, Stochastic Quantization, and Integer Quantization. 

For clarity, Linear Quantization divides the range uniformly into levels, making it simple and fast 

to implement [17][18]. Fixed-Point Quantization converts floating-point numbers to fixed-point 

representation, optimizing it for hardware acceleration [17][19]. Symmetric Quantization uses 

quantization levels centered around zero, reducing computational overhead and improving model 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/100/2025.20699 

157 



compatibility [17]. Asymmetric Quantization accommodates data distributions with offset means, 

better handling skewed data and achieving higher accuracy for certain tasks [17]. Lastly, Stochastic 

Quantization introduces randomness to avoid artifacts, rounding weights probabilistically to improve 

generalization [17]. 

Among the uniform quantization approaches evaluated in this study, Stochastic Quantization and 

Symmetric Quantization using 8-bit precision showed the best performance across key metrics such 

as SNR and bpp. These approaches outperformed other models evaluated in MultiTempGAN, 

including LinkNet, ResNet, and U-Net, demonstrating their effectiveness. When compared to the 

original MultiTempGAN model, while a slight drop in SNR is observed, which is typical in 

quantization, Q-MultiTempGAN delivered visually comparable results, as shown in Figure 2, which 

highlights the performance of different approaches for a sample image from one of the datasets. The 

results of these evaluations are presented in Table 2 in the performance metrics section. 

4.2. Mixed-Precision Quantization 

In mixed-precision quantization, different parts of the model (e.g., layers or parameters) are quantized 

to varying bit widths based on their sensitivity to quantization errors [20]. The following mixed-

precision approaches were evaluated in this study: (i) quantizing only convolutional layers, where 

non-convolutional layers remain in 32-bit precision; (ii) quantizing only non-convolutional layers, 

with convolutional layers preserved in 32-bit; (iii) quantizing convolutional and non-convolutional 

layers to different bit widths, assigning one bit width to each type of layer; and (iv) layer-wise 

precision quantization, which assigns distinct bit widths to critical convolutional layers, regular 

convolutional layers, and non-convolutional layers. 

Among these approaches, (i), quantizing only convolutional layers to 8 bits, achieved an SNR of 

25.19 and a bpp of 0.0148. Similarly, (iv), the layer-wise precision quantization approach, with 

critical convolutional layers quantized to 16 bits, regular convolutional layers to 8 bits, and non-

convolutional layers to 6 bits, resulted in an SNR of 24.93 and a bpp of 0.0149. Despite these results, 

the performance of these mixed-precision approaches remained below that of symmetric and 

stochastic quantization methods from the uniform quantization category, as illustrated in Figure 2. 

5. Performance Metrics 

Table 2 presents the averaged performance metrics for all evaluated models, both quantized and non-

quantized. The abbreviations used in the table are as follows: "Q-MultiTempGAN Stoch" represents 

Q-MultiTempGAN employing Stochastic Quantization; "Q-MultiTempGAN Symm" denotes Q-

MultiTempGAN utilizing Symmetric Quantization; "Q-MultiTempGAN Conv" corresponds to Q-

MultiTempGAN quantizing only convolutional layers; and "Q-MultiTempGAN LWPQ" refers to Q-

MultiTempGAN applying Layer-Wise Precision Quantization. Additionally, "Ratio" indicates the 

Compression Ratio. 

Table 2: Average SNR, bpp, Parameters Count, Compression Ratio, and LMSE for all models. In Q-

MultiTempGAN LWPQ, BP denotes bit precision, where critical and regular convolutional layers are 

quantized to 16 and 8 bits, respectively, and non-convolutional layers are quantized to 6 bits. 

Model Bits Q-Params 
Side 

Info. 

Memory 

(MB) 
bpp Ratio SNR LMSE 

LinkNet 32 0 0 9.76 0.0595 1 24.82 0.49 

ResNet 32 0 0 9.76 0.0665 1 22.23 0.65 

U-Net 32 0 0 9.76 0.0590 1 25.49 0.45 

MultiTempGAN 32 0 0 9.76 0.0590 1 26.34 0.39 
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Q-MultiTempGAN 

Stoch 
6 2,560,252 36 1.83 0.0111 5.33 19.41 16.51 

Q-MultiTempGAN 

Stoch 
8 2,560,252 36 2.44 0.0148 3.99 25.42 1.08 

Q-MultiTempGAN 

Symm 
6 2,560,252 36 1.83 0.0111 5.33 21.86 6.11 

Q-MultiTempGAN 

Symm 
8 2,560,252 36 2.44 0.0148 3.99 25.78 0.72 

Q-MultiTempGAN 

Conv 
6 2,558,000 10 1.83 0.0111 5.31 23.93 2.41 

Q-MultiTempGAN 

Conv 
8 2,558,000 10 2.44 0.0148 3.98 25.19 0.66 

Q-MultiTempGAN 

LWPQ 
BP 2,560,252 36 2.45 0.0149 3.97 24.93 0.57 

 

As shown in Figure 2, which plots the SNR against bpp for different models, the distances between 

models are calculated using the Euclidean distance formula given in Equation 3 applied to normalized 

SNR and bpp values. The normalization approach is shown in Equation 2 and it ensures that both 

SNR and bpp values are scaled to range between 0 and 1, eliminating the potential skew effect caused 

by their differing units of measurement. 

 𝑏𝑝𝑝𝑛𝑜𝑟𝑚 =
𝑏𝑝𝑝−𝑏𝑝𝑝𝑚𝑖𝑛

𝑏𝑝𝑝𝑚𝑎𝑥−𝑏𝑝𝑝𝑚𝑖𝑛
, 𝑆𝑁𝑅𝑛𝑜𝑟𝑚 =

𝑆𝑁𝑅−𝑆𝑁𝑅𝑚𝑖𝑛

𝑆𝑁𝑅𝑚𝑎𝑥−𝑆𝑁𝑅𝑚𝑖𝑛
 (2) 

In Equation 2 which displays how normalized values are calculated, 𝑏𝑝𝑝𝑛𝑜𝑟𝑚 and 𝑆𝑁𝑅𝑛𝑜𝑟𝑚 

represent the normalized values for bpp and SNR, for each relevant model respectively, ensuring both 

metrics are scaled to the same range. 𝑏𝑝𝑝𝑚𝑖𝑛  and 𝑏𝑝𝑝𝑚𝑎𝑥  refer to the minimum and maximum bpp 

values among all models, while 𝑆𝑁𝑅𝑚𝑖𝑛 and 𝑆𝑁𝑅𝑚𝑎𝑥 are the corresponding minimum and maximum 

SNR values. 

The distance d between a model and the reference model (MultiTempGAN) is then calculated as: 

 𝑑 = √(𝑏𝑝𝑝𝑛𝑜𝑟𝑚 − 𝑏𝑝𝑝𝑟𝑒𝑓_𝑛𝑜𝑟𝑚)
2

+ (𝑆𝑁𝑅𝑛𝑜𝑟𝑚 − 𝑆𝑁𝑅𝑟𝑒𝑓_𝑛𝑜𝑟𝑚)
2
 (3) 

In Equation 3, 𝑏𝑝𝑝𝑟𝑒𝑓_𝑛𝑜𝑟𝑚 and 𝑆𝑁𝑅𝑟𝑒𝑓_𝑛𝑜𝑟𝑚 denote the normalized bpp and SNR values of the 

reference model (MultiTempGAN). The results indicate that the minimum distance belongs to 

Symmetric Quantization with 8-bit precision, which balances significant compression efficiency with 

high image quality. 

Table 2: (continued). 
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Figure 2: Comparison of different models based on their normalized SNR and bpp values. 

 

Figure 3: Visual comparison of reference, target, and reconstructed images using MultiTempGAN 

and Q-MultiTempGAN using Symmetric and Stochastic quantization with 8-bit precision.  

The visual results in Figure 3 confirm the performance metrics discussed earlier, showcasing the 

outputs of the original MultiTempGAN model and its post-training quantized versions, including 

stochastic and symmetric quantization methods, alongside the reference and target images. The 
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results demonstrate that the symmetric quantization method produces outputs closely aligning with 

the target image in terms of visual quality, highlighting its capability to achieve efficient image 

reconstruction without significant distortion. 

6. Conclusion  

Q-MultiTempGAN, despite the applied quantization strategies, continues to outperform other models 

such as LinkNet, ResNet, and U-Net, which were discussed in the original MultiTempGAN study. 

This shows the robust design of the MultiTempGAN framework and its ability to maintain high 

performance even under significant model compression.  

SNR is a logarithmic metric measured in decibels (dB), meaning its values are not directly 

proportional to the underlying signal power. For instance, the average SNR of MultiTempGAN is 

26.34, while that of the symmetric quantized version is 25.78. The perceived difference is not merely 

with the value of 0.56; rather, when calculated logarithmically, the difference in power corresponds 

to a percentage change, numerically reinforcing the closeness of the results. 

Given the logarithmic nature of SNR, enhancing SNR while keeping bpp almost the same is critical 

for achieving better compression without sacrificing quality. Future research could explore advanced 

approaches like non-uniform quantization, which allows for more efficient allocation of bit-widths 

based on data (weights) distribution, potentially resulting in higher SNR with minimal memory 

overhead. 

This study used TensorFlow 1.15 library, which lacks native support for Quantization-Aware 

Training (QAT) [21]. Future work could utilize newer versions of this library with QAT, where 

quantization is integrated during training. Unlike post-training quantization, QAT enables models to 

adapt to lower-precision weights while training, minimizing accuracy loss and achieving better trade-

offs between accuracy and compression efficiency. 
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