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Abstract. This paper presents a comprehensive approach to the challenges of vertex finding, track finding,
and track fitting within particle physics experiments. The primary objective of vertex finding is to accurately
determine the vertex location along the z-axis using the X, y, and z coordinates of detected hits. For track
finding, we focus on identifying 20 distinct tracks by correctly combining five hits for each track, allowing
for the determination of the track’s momentum components (px, py, pz). The transverse momentum pr is
calculated as a function of the radius r of the circle on which the hits lie in the x-y plane. Finally, in the
track fitting stage, a circular fit is performed on the five points of each track. The radius r and the residuals
from the fit are used as features to train a machine learning model, specifically a multi-layer perceptron
(MLP), to predict the true transverse momentum pr. The performance of this approach is evaluated by
comparing the predicted and true transverse momenta, with the goal of achieving a tighter distribution and
reduced standard deviation, indicative of improved predictive accuracy.
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1. Introduction

1.1. Background on pattern recognition and prediction

High-energy particle physics experiments are fundamental to exploring the building blocks of matter
and the forces governing their interactions. These experiments typically involve colliding particles
at extremely high energies, generating a multitude of secondary particles that travel through various
detectors. Accurately reconstructing the trajectories of these particles is critical for understanding the
physical processes at play. This reconstruction process hinges on three core tasks: vertex finding, track
finding, and track fitting.

Vertex finding is the first task that we have accomplished. The vertex represents the point of origin
of the particle collision, typically located along the z-axis in the detector’s coordinate system. By
accurately determining the vertex is essential and important, because it serves as the reference point
for our measurements.

Following vertex finding, track finding involves identifying the paths taken by individual particles
as they move through the detector. When it comes to track findings, we need to differentiate between
multiple particle tracks, often in a dense and noisy environment with a lot of noise, where tracks may
overlap or intersect with each other. The primary challenge for track finding is to correctly group the hits
into coherent tracks, and then calculate and compute the momentum components of the particle in three
dimensions X, y, Z (pX, pY, pz).

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Figure 1. Scatter Plot of x-y Coordinates for event 0

Track fitting, is a process where the raw estimates from the data are refined using mathematical
models to describe the trajectory of the particle. In general, this entails fitting the hits associated with
each track to a circle and gets better resolution for a particle. Improved track fitting does not solely
help in having access to better-reconstructed tracks, but it also enhances this accessibility by being a
smart filter of noise and controlled uncertainties that come with the measurements of pivotal physical
parameters.

1.2. Research Objective

The primary objective of this research is to create and develop a robust and accurate algorithm or
methodology for accurately performing vertex finding, track finding, and track fitting in the context of
high-energy particle physics experiments. The key goals of this study are to account for the inherent
challenges that come with noisy data, overlapping tracks, and precision momentum measurements.
We combine classical geometric methods with different machine learning models like random forest
regressor, MLP, and XGboost model in order to improve the transverse momentum (pr) predictions to a
large extent.

Our approach is evaluated using a dataset containing simulated collision events, where the true vertex
and track information are given and known. This allows us to compare our predicted values with the
ground truth and help us to enhance our algorithm.

Last but not least, the success and accomplishment of this research and study will contribute to more
precise particle trajectory reconstructions, which are crucial and essential for analyzing and interpreting
data in particle physics experiments and making it possible to lead to deeper insights into fundamental
physics.

2. The Dataset

In the task of vertex finding, we have data that involves 10,000 events, and each event comprises 20 hits,
where three coordinates x,y and z of the hits are given. Our algorithm aims to find the vertex, which is
the origin point from where the particles are emanated. The true vertex is provided in the first line of
the data file, allowing for verification of the accuracy and preciseness of our vertex-finding algorithm. A
crucial first step is to ensure that the events in the data are properly read, then examine the distribution
of the hits in 3D space. It is expected that the hits will be distributed across two concentric cylinders,
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with the vertex lying on a line at the center of these cylinders, aligned with our z-axis. This step serves
as the foundation for our vertex-finding process, which is a critical component of the pattern recognition
pipeline[1].

The second task focuses on track reconstruction. In this context, each line in the file corresponds to
a single hit, with the format: event number, track number, track momentum components (px, py, pz),
and hit coordinates (x, y, z). Each track consists of five hits, and for each event, there are 20 tracks. The
goal is to correctly group the five hits corresponding to each track and determine the momentum vector
p = (px,py, pz) at the vertex. The transverse momentum, pr, which is proportional to the radius r of
the circular trajectory of the hits in the z-y plane, The transverse momentum pr is calculated based on
the radius r of the circular trajectory in the x-y plane. Specifically, the transverse momentum is computed

as:
pr = \/P2 + D3 (1)

where p, and p, are the momentum components of the particle. The transverse momentum p reflects
the particle’s motion in the transverse direction after the collision.The transverse momentum pr reflects
the particle’s motion in the transverse direction after the collision [3].

By accurately identifying the five hits that belong to each track, one can determine both the radius
and the direction of p at the vertex, located at (0, 0, 0) in these events. The data file’s format is conducive
to direct import into a pandas DataFrame for further analysis and visualization of the hit coordinates,
although other methods of data processing are also possible[2], [3].

The third task focuses on track fitting. In this stage, the data file provides the true transverse
momentum pr and the five points on each track. This allows for the implementation of track fitting
techniques to accurately reconstruct the trajectory of the particles and determine the pr from the given
hits. By fitting the track, we refine the estimation of the particle’s momentum vector at the vertex,
ensuring that the computed pr closely aligns with the true value. This task can be initiated independently
of the track-finding process, enabling different team members to work on vertex finding, track finding,
and track fitting simultaneously for a more efficient workflow [1].

3. Methods
The method used in Vertex Finding is shown in Figure 2.

Only consider Add back
coordinates of coordinates
xandy ofz

Figure 2. Flow chart of method in Vertex Finding

First take a set of events and observe the X-Y plane in the 2D graph. It was then discovered that the
points formed two circles. (Figure 3 is an example of event O in Vertex Finding.)

In addition, we connect the inner points and the outer points one by one to eliminate interference
points by checking whether the distance between the two points is near 2. (Figure 4 is an example of
event 0 in Vertex Finding.)

After the points on the two layers are corresponding, add the z-coordinates of the points and put
them into the 3D map. Connect the corresponding points and extend the connection to see the point that
intersects with the z-axis. (Figure 5 is an example of event 3 in Vertex Finding.)
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Scatter Plot of Coordinates
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Figure 3. Scatter Plot of x-y Coordinates for event 0
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Figure 4. Unique Connections for points with Distances Near 2 for event 0

Finally, the mean of the intersection points of these lines and the z-axis in each event is used as the
predicted z-value. This is Vertex Finding.

The method used in Track Finding is shown in Figure 6.

First establish the r-z coordinate system. Convert the X-y-z coordinates of the points into r-z
coordinates and put them into the new coordinate system, then draw all the points [4]. These points
are distributed on five layers, and we found that if these five points are a group, then they should form
a straight line on the r-z plane and intersect at the origin. After that, through these two conditions, we
match all five points on each trajectory in each event. (Figure 7 is an example of the two events in Track
Finding.)

Second, put the points back into the x-y coordinate system and connect the lines. (Figure 8 is an
example of three events in Track Finding.)

Moreover, we make a mid-perpendicular line between the points in each set of five matched points.
The point where the mid-perpendicular lines intersect is the center of the circular track. Next, connect
the center of the circle and the point to get the radius R. The radius 7 of the circular track in the x-y plane
can be calculated using the following formula:

1

r=gV(e—2)?+ (12 — 1) @)

where (z1,y1) and (x2,y2) are the coordinates of two consecutive hits on the track. This formula
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3D Plot of Valid Points with Extended Lines to Z Intercepts
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Figure 5. 3D Plot of Valid Points in event 3 with Extended lines to Z intercepts

The extension of the

matching five-point
the x and y connection should
coordinates

he origin.

Data of Track Put in r-z Plane cross the origin Match the points of Connect the matched
Finding and Find pattern five layers one by one points in the x-y plane
Get all predicted Check whether the Calculate the Do the middle perpendicular

cricle Tracks predicted radius is correct S radius R line to find the cricle center

Connect point

and circle
center

Calculate r by

relationship
between R and
pT(true)

Figure 6. Flow chart of method in Track Finding
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Figure 7. r-z Scatter Plot for the two events with Connecting Lines Extended to Origin

determines the distance between two hit points, allowing for precise calculation of the track’s radius.
By determining the radius, we can more accurately fit the particle’s trajectory [5].

We found all the tracks through determining the center and radius of each track. Then continue to
calculate r/pp(true) for each event and to see if they are proportional. Because if the predicted circular
track radius is correct, r/pp(true) should be proportional.

Finally, Determine whether the radius of each circular track is correct by checking the distribution of
r/pr(true) for all events. Then we found the distribution of r/pr(true) for all events that is centered
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Hits in x-y plane for Event 302 Hits in x-y plane for Event 909 Hits in x-y plane for Event 923
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Figure 8. Hits and Tracks in x-y plane for random three events

around 100 with a standard deviation of around 4, which means all tracks are correct [6].
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Figure 9. Distribution of r/py(true) for All events

The method used in Track Fitting is that we designed a machine learning model. The machine
learning model we have designed was based on predicting a transverse momentum (pr ) related factor.
Features are first extracted by fitting the initial hit points of each track into a circle. Subsequently, the
actual points determined from the fitted circles were calculated, along with the average hit coordinates
and momentum components.

The baseline model pipeline started with the pre-processing step, where the features were
standardized to have a mean of 0 and a variance of 1. Next, new interaction features were obtained
via polynomial expansion. Using a Random Forest model, we were able to predict the target variable
that represents the py. The grid search was the method we used that was utilized for the optimization,
which usually means the iterative approach with all data combinations. We also tried two models, MLP
and XGboost, but we found the Random Forest model was the best [7].

Moreover, the performance of the optimized model was evaluated using cross-validation and on a
separate test set. For that matter, R-squared score (the ratio of variance of explained variable explained
by the model), and MSE (mean squared error), the average squared difference between actual values and
predicted values - were selected as the key metrics. This way, we created a model with good predictive
performance for a property of the particle system.
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4. Experiments

The experiments were conducted to evaluate the effectiveness of our proposed methodology across the
three main tasks: vertex finding, track finding, and track fitting. These tasks are critical for accurately
determining the trajectory and momentum of particles in high-energy physics experiments.

4.1. Vertex Finding

In the vertex finding experiment, we started by visualizing the hits in the X-Y plane. By plotting these
hits, we identified two distinct circles, corresponding to two layers of hits in the detector. We then
connected corresponding points from the inner and outer =circles, filtered out any noise or erroneous
points by checking distances, and extended these connections into the Z-plane to estimate the vertex
location. The intersection points of these lines with the Z-axis were averaged to predict the Z-coordinate
of the vertex. To achieve a more accurate vertex location, we use a weighted average formula to calculate
the z-coordinate. By assigning a weight w; to each hit based on its proximity to the actual vertex, we can
reliably predict the vertex location:

> WiZi

Zvertex —
2o Wi

where z; is the z-coordinate of each hit and wj; is the corresponding weight. This weighted average
method effectively reduces noise in the vertex prediction, improving the accuracy of the result [8].

This approach was repeated for each event in the dataset, leading to a robust prediction of the vertex
location along the Z-axis.

3)

4.2. Track Finding

For track finding, we first put the hit coordinates into an R-Z plane, where R is the radius in the X-Y
plane. Then, We found the hits that correspond to the same track align into a straight line in this R-Z
plane, which should ideally pass through the origin. After that, we grouped the hits into tracks each of
them consist five points. After finding the correct tracks, we converted the coordinates back to the X-Y
plane, where we performed a circular fit to determine the radius R for each track. Then we calculate
r/pr to ensure our preciseness, where the predicted value is compared to the true values provided in
the dataset, which ensures our predicted is near to the actual track and followed with real-life physical
properties [9].

4.3. Track Fitting

Then, we focused on track fitting where we used the hits from the dataset to fit into a circular track. The
elements used for track fitting included using radius R and. These features were then fed and put into
different machine learning models to fit a circular path, including random forest regressor, MLP, and
XGboost. The performance of these models is then evaluated by Mean Squared Error (MSE) and R?
score. The dataset we used for our experiment comprised 10,000 events, each of which included 20 hits.
The true vertex and tracking information were known, by making use of that, we can train our model and
improve its accuracy, also ensure that our predicted output is close to the actual value. However, though
some of the results are reasonable, some of the results from these experiments demonstrated the lack of
robustness of our approach.

5. Results

When it comes to vertex finding, after trying different parameters, improving the algorithm’s robustness,
and filtering the noises in the original data, we finally get a decent result. As we can see in the
graph(Figure 10), we analyzed the error and got the distribution of the true vertex- calculated vertex.
Our algorithm’s mean error is 0.007999618, which is very close to 0 and precise.
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Distribution of Errors (True Vertex Z - Calculated Z-Axis Intercept)
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Figure 10. The distribution of Error(True vertex - Predicted vertex)

When it comes to track finding, we also get satisfactory results. After trying different parameters and

adding some filters to reduce the noise, we get precise data (Figure 11) compared to the true track (Figure
12). As we can see, the predicted track is very similar to the true track.
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Figure 11. Our predicted track Figure 12. True track

When it comes to track fitting, We tried different models, including MLP, random forest regressor,
and XGBoost. By using MLP model, we obtained a MSE of 0.002, with an imprecise R? score of -2.472.

In the track-fitting process, we calculate the residual to evaluate the accuracy of the fit. The residual is
defined as:

n

Residual = Z(Tﬁtted — Tirue)? )
=1

The residual measures the error between the fitted track radius rgueq and the true track radius 7. A
smaller residual indicates a more accurate fit.

To evaluate the performance of the machine learning models, we use the MSE and the R-squared (R?)
score, which are defined as follows:

n

1
MSE = E Z(ytrue,i - ypred,i)2 (5)
=1
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Z?zl(ytrue,i - 3/pred,i)2
Z?:l(ytrue,i - Q)Q

The MSE measures the average squared difference between the predicted and actual values, while the R?
score reflects how well the model fits the data. These metrics allow us to effectively evaluate the model’s
performance in predicting the transverse momentum.

Afterward, we used the XGBoost model, which produced a better result with an R? score of -0.806.
We applied the random forest regressor to achieve better results, which provided reasonable outcomes.
After training and finalizing our random forest regressor model, we achieved an MSE of 0.001, close
to zero. However, the R? score still needs improvement, as it remained at -0.811 when using the same
random forest regressor. Though we have a decent MSE, the poorness of the R? shows that our track-
fitting model is not performing well in predicting the transverse momentum pT or accurately capturing
the particle trajectories from the given data.

R2=1-

(6)

6. Conclusion and Discussion

In summary, this paper details a resilient technique to overcome the vertex retrieval, track identification,
and track approximation problems that typically contest particle physics experiments. The strategy not
only locates the vertices along the longitudinal axis with a high degree of accuracy but also tracks
down the different tracks by the synergistic conjunction of hits, which sets the ground for precise
momentum deductions. Following a process of circular fitting applied to the track data, the integration of
radius and residuals into a machine-learning model eventually amplifies the predictive capacity of actual
transverse momentum (pr) by an order of magnitude. Through the use of a MLP model, random forest
regressor, and XGboost for prediction, the agreement between predicted instead of actual pr values
is intended to improve, as well as to achieve a shrinkage in distribution and standard deviation. This
all-including strategy not only enhances the accuracy of the trajectory and vertex evaluation but also
outlines the opportunities of uniting conventional fitting techniques with cutting-edge machine learning
in order to deepen the study of particle physics. The observations reveal the key roles of integrating
advanced algorithms and models to extend the experimental accuracy and complexity in data analysis
and interpretation.
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