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Abstract. Clustering is a fundamental unsupervised task in machine learning. It involves 

grouping a set of objects into distinct clusters based on their inherent properties. Clustering finds 

applications in various domains, such as image segmentation, customer segmentation, document 

categorization, anomaly detection, and social network analysis. In this paper, we investigate 

several clustering algorithms applied to 1D and 2D histogram data. In particular, we try the 

Center of Gravity, Gaussian Mixture Model, and Neural Network and conclude that in low-

dimensional cases, simple methods can yield good performance. 
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1.  Introduction 

In this paper we analyzed 1D and 2D multiple clustering datasets using different types of clustering 

models. The datasets that we are given contain multiple clusters. Our goal is to evaluate the results and 

performances of different models. The methods we used includes the Center of Gravity, Neural 

Networks, and Gaussian Mixture Model. We begin by describing the datasets separately and the pre-

processing steps we did, then we detailed the setup and resolutions of each model applied to the datasets. 

Lastly, we concluded our findings and discussed the implications of our results. Throughout this study 

our goal is to determine which model is best at identifying the clusters in the dataset and provide the 

most accurate results. 

There are two types of datasets, namely 1D and 2D, used throughout the study. Each entry contains 

the number of points lying in the bin (1D case) or the cell (2D case) respectively. The bin boundaries 

are consecutive from 0 to 48 with step 1. The cells are generated from a uniform mesh grid with both x 

and y coordinates delimited by 0 and 64 with gap 1. 

2.  Method 

2.1.  Center of Gravity 

For a bin [𝑖 −  1, 𝑖] and its associated bin count 𝑐𝑖 , we determine that 𝑐𝑖 , is a local maxima if 𝑐𝑖 is larger 

than 𝑐𝑖−𝜎 , … , 𝑐𝑖−1, 𝑐𝑖+1, … , 𝑐𝑖+𝜎  , where σ is a tunable hyperparameter by which we can adjust the 
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magnitude of neighborhood. To some extent and especially in multiple-cluster case, it can help us handle 

the noisy data. 

Similarly for a cell (𝑖, 𝑗) and its associated bin count 𝑐𝑖,𝑗 we expect this count to be larger than that 

of its neighbors surrounding it in two directions. That is, 𝑐𝑖,𝑗  should be larger than 

𝑐𝑖−𝜎,𝑗, … , 𝑐𝑖+𝜎,𝑗, … , 𝑐𝑖+𝜎,𝑗, … , 𝑐𝑖+𝜎,𝑗+𝜎 (neglecting crossing the boundaries). 

The intuition behind the center of gravity is that, the cluster center should be a local maxima in terms 

of the frequency of points. But to avoid the effect b rough by noise, we expect the value of local maxima 

to be larger than other numbers within a small window around itself [1]. 

2.2.  Gaussian Mixture Model 

Gaussian mixture model assumes that the data points are generated with a weighted sum of 𝐾 Gaussian 

distributions. That is, for each data point 𝑥, its probability is 

𝑝(𝑥) = ∑  

𝐾

𝑖=1

𝜋𝑖𝑁 ∣ (𝑥; 𝜇𝑖 , 𝜎𝑖
2) 

where 𝜋𝑖 is the probability that 𝑥 is drawn from 𝑖-th Gaussian distribution and 𝑁 (𝑥; 𝜇𝑖 , 𝜎𝑖
2) is the 

probability of obtaining x with the i-th Gaussian distribution. 

The Gaussian mixture model can be modelled with maximum likelihood estimation. Under the 

assumption identically-and-independently-distributed samples (data points), the likelihood function can 

be written as: 

𝐿(𝜃) = ∏  

𝑛

𝑖=1

𝑝𝜃(𝑥𝑖) = ∏  

𝑛

𝑖=1

∑  

𝐾

𝑗=1

𝜋𝑗𝑁(𝑥𝑖; 𝜇𝑗 , 𝜎𝑗
2) 

The objective of Gaussian mixture model is to maximize the above likelihood function with respect 

to parameters 𝜃 =  (𝜋, 𝜇1, . . . , 𝜇𝑘  , 𝜎1, . . . , 𝜎𝑘 ): 
𝜃∗ = arg 𝑚𝑎𝑥

𝜃
 𝐿(𝜃)

 

subject to ∑  𝐾
𝑖=1 𝜋𝑖 = 1 

2.3.  Neural Network 

Neural network is a universal function approximator (given enough artificial neuron cells, the neural 

network is theoretically capable of approximating any function). 

Typically, during neural network training, we choose a loss function l can compute the total loss 

𝐶(𝜃) incurred on the whole dataset, where 𝜃 is the neural network parameter: 

𝐶(𝜃) = ∑  

𝑛

𝑖=1

ℓ(NN𝜃(𝑥𝑖), 𝑦𝑖). 

The objective is apparently to minimize the total loss: 

𝜃∗ = arg 𝑚𝑖𝑛
𝜃

 𝐶(𝜃). 

Though we can explicitly write down the formula of 𝐶 w.r.t. 𝜃, there is no easy closed-form solution 

to the optimization problem above. 

Therefore, we turn to iterative algorithms, namely the gradient descent family (e.g. stochastic 

gradient descent, Adam solver), to solve the optimization problem above. 
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3.  Experiment 

3.1.  Data 

The 1-dimensional dataset consists of 100000 rows, each containing 55 values. The values represent, in 

order, ID/index of data (1), number of clusters (2), centers of clusters, count of data points in each cluster 

(2), and the histogram bin counts for each cluster (50). 

The 2-dimensional dataset consists of 100 entries, each containing 10 ground-truth cluster centers 

and a 64x64 array that contain the number of points in each cell. 

3.2.  D 2-cluster Case 

In this case, we only have two clusters in each entry. The objective is to predict the distance between 

the two clusters [2]. 

3.2.1.  Center of Gravity 

In Center of Gravity, we simply set 𝜎 =  2 and check the local maxima in a single loop. After finding 

the cluster centers, we subtract them to give the distance. The distribution of absolute difference between 

the predicted distance and the ground-truth distance is depicted in Fig. 1. 

3.2.2.  Gaussian Mixture Model 

The data is read in chunks of 1000 which are then processed in parallel to improve the speed of the 

program. We fit a Gaussian Mixture Model with 2 components to the bin centers. The absolute 

difference between the means of the two Gaussian distributions is then computed. We compute the error 

between the predicted and actual differences of the cluster centers, and plot a histogram of the errors. 

FIG. 2 shows the result of the Gaussian Mixture Model. 

 

Figure 1. Histogram of Errors between Predicted and Actual Cluster Distances 

 

Figure 2. 1D Error Histogram for 2-cluster Gaussian Mixture Model 
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3.2.3.  Neural Network 

In the Neural Network model, we take the input data to be the histogram bin counts for each cluster [3]. 

The neural network is a Multi-Layer Perceptron (MLP) with input layer of 50 neurons (corresponding 

to 50 histogram bin counts), 3 hidden layers with 48, 100, and 100 neurons, respectively, and an output 

layer of 1 neuron (predicting the distance between the two cluster centers). The network is trained using 

the adam solver, and the loss function used is the Mean Squared Error (MSE), which measures the 

average of squares of the errors between the predicted and actual values. 

The figure below shows the result of the Neural Network. 

 

Figure 3. 1D Error Histogram for 2-cluster Neural Network 

3.3.  D Multiple-cluster Case 

Result of different models on the 2D multiple-cluster dataset, shown by figures. 

3.3.1.  Center of Gravity 

Describe the setup of the model in 2D case. The Center of Gravity model calculates the central point of 

each cluster based on the provided 2D coordinates in a text file. In this case, the “true clusters” and 

“found clusters” are compared to assess the model’s performance. The script processes the clusters, 

calculates the differences. 

In the 2D multiple-cluster model, the Center of Gravity (CoG) model identifies and locate clusters 

by determining the local maxima within a 2D histogram. The 2D histogram’s result is generated from 

the provided data text file. Each cell in the histogram grind represents a bin. To determine the local 

maxima, we set up a hyper- parameter, which defines the neighborhood window. For a cell (𝑖, 𝑗) with a 

count 𝑐𝑖, 𝑗 we can identify the local maxima if 

𝑐𝑖,𝑗 > 𝑐𝑖−𝜎,𝑗, … , 𝑐𝑖+𝜎,𝑗, 𝑐𝑖,𝑗−𝜎 , … , 𝑐𝑖,𝑗+𝜎 

This can help us reduce noise by making sure that the identified cluster centers are at peaks compared 

to the surroundings. We processed the 2D dataset to evaluate the gap between true and predicted clusters. 

The overall performance of the Center of Gravity model is evaluated by comparing those differences. 

3.3.2.  Neural Network 

Describe the setup of the model in 2D case. 

In case of the 2D clusters we used a Neural Network model to predict the cluster centers that’s 

extracted from the 2D histogram data. And we used a Multi-Layer Perceptron (MLP) for our neural 

network model [4] [5]. 

The MLP includes the following structures; Input Layer: Flattened 64x64 grid (4096 input neurons) 

Hidden Layer 1: 256 neurons Hidden Layer 2: 128 neurons Hidden Layer 3: 64 neurons Output Layer: 
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2 neurons (predicting the x and y coordinates of the cluster center). The input of this model is the 2D 

histogram, and the output was the predicted coordinates and location of the cluster centers. In order to 

train the neural network model, we used methods such as the Adam optimizer and the Mean Squared 

Error (MSE) loss function. The MSE calculates the average of the squares of the errors that’s in between 

the predicted and true values. The overall performance of the Neural Network Model was evaluated by 

comparing the predicted cluster centers and the true centers. 

4.  Conclusion 

Summarize the performances of different models (e.g. the error distribution) and discuss which is better 

and why. In the 1D models, the Gaussian Mixture Model per-formed the best. It had the lowest error 

variance and most accurate predictions, as indicated by the concentration of errors around 0 with a small 

group near 15 and 20. The Center of Gravity method centered around 0, but had a much larger spread 

of errors. This suggests that it is more susceptible to noise and less precised compared to the Gaussian 

Mixture Model. The Neural Network also showed a peak at 0 with a relatively symmetrical spread 

around it. It is less accurate than the Gaussian Mixture Model, but showed a smaller range of errors 

compared to the Center of Gravity Model. The Center of Gravity method can provide a reasonable 

cluster center prediction. It can do that by setting an appropriate, this model can identify local maxima 

as cluster centers effectively, it indeed is an effective method but it might be sensitive to noise and 

depends on the choice of. On the other hand, The Neural Network model showed an overall better 

performance by learning more complex spatial patterns and data from the 2D histogram data. It shows 

more accurate predictions of cluster centers compared to the Center of Gravity method. However, the 

Neural Network model requires more computational resources and more careful tuning of parameters. 
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