
GPThelper: A Prompt that You Can Discover LLM’s Full
Potential

Peixin Han
Nanjing University of Posts and Telecommunications

1679802132@qq.com

Abstract. It is widely acknowledged that LLMs(Large Language Models)assist us in our daily lives and it
both save our times and energy,but it still fails in some specific area like DSL(Domain Specific Language).
In response to this, the GPThelper was invented, which includes basic knowledge of the language, concepts,
and commands used by the language, as well as tips for improvement to correct mistakes.With the Brainf
language, issues were first identified in the program calculator regarding the location of the pointer, and
prompts were improved to correct this. In the second experiment, errors occurred during the final section
where parameters were to be added together, and these were subsequently corrected.In the evaluation section,
various LLMs, including Kimi and Doubao, were tested using the GPThelper to handle tasks involving
DSLs, and the results were excellent.It was found that this model works well with most LLMs, although
there are still specific occasions where it fails.

Keywords: DSL,LLMs,Prompts

1. Introduction
Large Language Models (LLMs) have become an integral part of various fields today, as they possess
the ability to assist in a wide range of tasks, including but not limited to, coding, data analysis, and
even academic paper writing.There are already papers demonstrating applications in tasks such as code
completion and translation[1]. Research on the potential of LLMs for programming language generation
and understanding has also shown that LLMs have a great advantage in dealing with programming
language problems.[2]The versatility and adaptability of LLMs have thus cemented their role as a critical
asset in both professional and educational settings.

Nevertheless, despite their widespread application and usefulness, LLMs encounter significant
challenges in certain specialized areas where user requests may not be fully comprehended, leading
to inaccurate or incomplete responses.For example, this paper discusses the limitations of large language
models in terms of code generation, including specific challenges when dealing with DSLs, such as
syntax complexity and context understanding[3]. These shortcomings can have a considerable impact
on users, particularly in niche fields, where precise and contextually relevant information is crucial
for effective learning and work performance. Studies on the effectiveness of large language models
in domain-specific code generation have shown the limitations of LLMs in dealing with this type of
problem[4].The limitations arise primarily due to the insufficient availability of training data and the
lack of user feedback in these specific areas, which hinders the LLMs’ ability to learn and adapt to less
commonly used languages or specialized terminologies.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

279

Figure 1: Input of Brainf code

Figure 2: Output of ChatGPT

To address challenges in interpreting minority languages and specialized jargon, GPThelper was
developed as a supplementary tool to enhance the performance of large language models (LLMs). By
providing essential examples, guidance, and foundational knowledge about these languages—including
key commands and concepts—GPThelper significantly reduces errors and improves the accuracy of
LLM responses. Its introduction not only mitigates understanding difficulties but also enhances practical
usability, leading to increased efficiency in users’ work and learning activities. This improvement
highlights the importance of tailored tools like GPThelper in expanding LLM capabilities to meet the
diverse needs of users across specialized domains.

2. Related Work
The closely related prior work is the following.

A similar model is proposed in Using Grammar Masking to Ensure Syntactic Validity in LLM-based
Modeling Tasks [5] .It demonstrates its own way to improve and show that frameworks that enable
constrained decoding enable smaller, less performant LLMs to produce syntactically correct models at
a reasonable rate.This part is highly related to my work at using GPThelper to improve the accuracy
and readability.However,although their research goal is to develop a domain-independent DSL-specific
modeling approach that is not optimized for a specific use case or domain,but this model has limitations
and requires pretraining.In this case the GPThelper saves more time and cost less computing power.

An advanced idea was raised in A Comparative Study of DSL Code Generation: Fine-Tuning
vs.Optimized Retrieval Augmentation [6].This paper discuss about two types of grounding information
for RAG based DSL generation. they defined 3 key metrics to focus on code generation quality as well as
syntactic accuracy and hallucination rate.they have a compiler to test the syntax and validate the functions
against a database of API names as well as parameter keys. It is also interesting to note that this benefit
does not transfer to hallucinated API names and their parameters keys where the fine-tuned model holds
the advantage.The model has been built still need to be improved.

3. Example
So in the previous experiment,we already know that ChatGPT can handle the coding tasks perfectly
and even for some DSLs like GDscript or haskell,but we do find a language it can not understand
properly which is Brainf. Brainfuck is an archetypically minimalist language, providing merely eight
commands[7].Researchers have conducted studies on the design and implementation of a 256-core
Brainfuck computer[8].This example find out how ChatGPT react to such a minority language and how
does GPT perform under the direction of my prompts. Dialogue showed as Figure 1.

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

280

Figure 3: Requests with prompts

Figure 4: Output of ChatGPT

ChatGPT encountered significant difficulties in accurately interpreting the instructions’ meaning
(Figure 2) and in fully understanding the functional mechanics of the language itself. Detailed analysis
revealed that the model unexpectedly altered the pointer’s position after the loop, which was not intended
or correct. To address this, a more detailed and explicit prompt could be developed, explaining the role of
each character in the sequence and specifying the intended pointer location to guide the model effectively.
This clarification is likely to enhance the model’s performance, as demonstrated in Figure 3.

Unexpectedly, ChatGPT still struggled to fully grasp the intended concept, as seen in Figure 4, often
overlooking or misinterpreting the critical instruction about the pointer’s position. This highlights a major
challenge with niche languages: ChatGPT’s training likely lacks sufficient exposure to such specialized
content. Although the prompt provided clear instructions, the model still struggled to execute the task
correctly, revealing its limited understanding of domain-specific languages (DSLs). This limitation arises
from its superficial comprehension and the scarcity of substantial training data for these languages. As

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

281

a result, even explicit guidance can lead to persistent errors due to the model’s restricted foundational
knowledge. This emphasizes GPT’s limited adaptability to niche languages, mainly due to insufficient,
domain-specific training data and the lack of extensive user feedback in these areas.

4. Background
4.1. LLM
A large language model (LLM) is a sophisticated language model using an artificial neural network with
billions or trillions of parameters. Trained on extensive unlabeled text data through self-supervised or
semi-supervised learning, LLMs can generate and understand natural language with high sophistication.
The two important models and methods used in large language models are BERT[9] (Bidirectional
Encoder Representations from Transformers) and GPT[10](Generative Pre-trained Transformer).Since
their emergence around 2018, large language models have demonstrated exceptional performance across a
wide range of tasks, including natural language processing, text generation, translation, and more. Their
ability to generalize knowledge from diverse datasets has made them invaluable tools in both research
and practical applications. Among the most well-known and widely used LLMs today are ChatGPT,
Kimi.ai, and Doubao, each of which has garnered significant attention for their capabilities in various
domains, from everyday conversational assistance to specialized tasks in different industries. The rapid
evolution and deployment of these models continue to shape the landscape of artificial intelligence and its
applications.Further information on website LLM.

4.2. DSL
A domain-specific language (DSL) is tailored for a specific application domain, unlike general-purpose
languages (GPLs), which are versatile across various fields. An example of a DSL is HTML, designed
for web development. Some DSLs are restricted to particular software, such as the code in MUSH
software. DSLs can be categorized by purpose, including markup languages, modeling languages, and
programming languages. While the idea of specialized languages has existed since computers began, the
term ”domain-specific language” gained traction with the rise of domain-specific modeling. Simple DSLs
for single applications are often called mini-languages. Further information on DSL or Domain-specific
languages[11] written by Martin Fowler.

4.3. Interpreter
An interpreter is a program that reads and executes instructions from an interpreted language, acting
as a ”middleman” between source code and the machine. It processes code line by line, resulting in
slower execution compared to compiled programs. However, interpreters allow code execution without
recompilation after updates, simplifying the development process. In contrast, a compiler processes the
entire source code at once, converting it into a standalone binary file that can be executed independently
without further interpretation.Further information on interpreterand Dynamic interpretation for dynamic
scripting languages[12].

5. Prompt Design
the figure 5 shows the procedure of designing the GPThelper

5.1. Design of the GPThelper
Our research begins when a line of Brainf code was input to the llms to see how llms response.Although
most LLMs like ChatGPT or kimi knows what kind of language it gets,sitll,there are some LLMS like
doubao that can not recognize the category of the language.The figures 6 shows a example that a LLM
can not define the type of the language.

In this context, a clear and effective prompt is essential for the language model (LLM) to accurately
identify the specified programming language and its domain. The first component of GPThelper includes

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

282

https://zh.wikipedia.org/wiki/%E5%A4%A7%E5%9E%8B%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B
https://zh.wikipedia.org/wiki/%E9%A2%86%E5%9F%9F%E7%89%B9%E5%AE%9A%E8%AF%AD%E8%A8%80
https://zh.wikipedia.org/wiki/%E7%9B%B4%E8%AD%AF%E5%99%A8

a brief introduction that provides foundational knowledge about the language’s functional scope and
characteristics. This aids the LLM in recognizing the language and optimizing response time, particularly
for familiar models.

However, even with this introduction, LLMs may struggle to fully comprehend the code. Identifying
the language is just the first step; the real challenge lies in accurately interpreting and processing the
code. As shown in Figure 7, LLMs can still have difficulty parsing its nuances. This highlights the
need for further refinement of prompts or additional support mechanisms to enhance the LLMs’ code
comprehension abilities.

Upon evaluating the performance of the LLMs(figure 7), it became evident that the results were
suboptimal. While the models were able to accurately identify the specific programming language being
used, they struggled with properly utilizing the language or responding appropriately to the given tasks.
This deficiency likely stems from insufficient pre-training in the specific language or a lack of relevant
commands and examples in the training data. To address this, the second component of GPThelper,
”language design,” offers detailed information about the language’s commands and usage patterns. This
aims to enhance the LLM’s understanding and operational capabilities. Code lines were then input
alongside the brief introduction and language design, with results showing the positive impact of these
enhancements on performance.

In the version shown in Figure 8, we added a language design that helps LLMs fully understand the
functions and commands of Brainf.

However, as shown in Figure 9, the result was incorrect: rather than producing the correct output of 8,
it returned ’H’. Analyzing the process reveals where ChatGPT’s response faltered.

The red part labeled in Figure 10 highlights where the model went wrong, indicating a failure to
understand how the pointer moves during the loop. To address this, we propose ”tips for improvement”
to correct the LLM’s errors and ensure adherence to rules during analysis. Experiments revealed that
ChatGPT can be confused by these tips; for instance, it may only update the pointer’s location before
the loop, forgetting to do so afterward. Thus, it’s crucial that these suggestions are comprehensive and
applicable to all scenarios. Providing a related example can also enhance the model’s task handling.
Below is the final version of GPThelper and its impact on LLM responses.

Figure 11 presents the final version of GPThelper. A request formatted according to the GPThelper
guidelines was submitted to ChatGPT to evaluate its response capabilities in this particular context.
This assessment aims to determine how effectively the model leverages the enhancements provided by
GPThelper to interpret and execute the given instructions.

According to figure 12,this time ChatGPT output the right answer and none of its steps went wrong.In
the next part we will discuss about how is its performs improved, does this take more time or less time,
and most importantly, how much progress did it make in improving the results’ Correctness and Accuracy.

5.2. Technique core
To address the challenge of extracting relevant information from dynamic responses generated by large
language models (LLMs) and crafting tailored prompts, initial experiments showed the LLM did not
assimilate input information as effectively as anticipated. Despite clearly defined requirements, the
LLM often failed to deliver satisfactory results. Consequently, GPThelper modules were developed
incrementally to address scenarios where the LLM’s superficial understanding of Domain-Specific
Language (DSL) limited its comprehension of inputs. Providing detailed explanations, supplemented with
examples, proved essential to enabling the LLM to produce accurate, coherent responses.

6. Evaluation
Although there is interpreters that can output the right answer and tells if the LLMs have output the
right answer,but the key point is to see how much progress it make.So the specific two dialogue (one in
calculation and one in words printing) will be analyzed in details.Some specific results should be taken
into account according to evaluating Large Language Models Trained on Code[13]. Although there have

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

283

Figure 5: Flow chart of design

Figure 6: LLM fail to define the language

Figure 7: LLM can not read the code

Figure 8: Design without tips

Figure 9: Result of ChatGPT

Figure 10: Error section

been a lot of researches such as An Evaluation on ChatGPT’s Effectiveness in an undergraduate Java
Programming Course[14]or a comparative analysis of popular large language models in coding[15],but
few of them compare various large language models in parallel.In this section several kinds of LLMs will
be analyzed and more elements will be taken into account. With the adding of the GPThelper,how much
progress it make?Did the output be more accurate? Did the illustration be more clear?

Two lines of Brainf code, using GPThelper, were input into various LLMs, including ChatGPT and
Doubao, with results shown below. Judging success based solely on output correctness overlooks the
progress these LLMs make, as outputs remain incorrect. However, comparing these results to prior
attempts without GPThelper allows us to observe measurable progress, increased efficiency, and the
number of correct steps achieved. Comparative experiments were also conducted across different LLMs
to evaluate GPThelper’s effectiveness in enhancing each model’s performance.

Test apps: ChatGPT, Kimi.ai and doubao
Brainf interpreter: EI brainfuck

6.1. Did LLMs answer more correct and accurate?
To assess the accuracy of various language models, we used the number of correctly interpreted code
lines as a primary metric, posing the same coding question to each LLM for comparison. Figure 13

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

284

https://chatgpt.com/
https://kimi.moonshot.cn/chat/cqnita6gi3puqdhb7p90
https://www.doubao.com/
https://copy.sh/brainfuck/

Figure 11: Final version of GPThelper

Figure 12: Output of ChatGPT

Figure 13: LLM’s correctness evaluation

Figure 14: LLM’s readability evaluation

illustrates the results, showing each model’s effectiveness with and without GPThelper. Blue bars represent
performance without GPThelper, while green bars indicate improvement with its support, highlighting the
tool’s positive impact on interpretation accuracy. Notably, ChatGPT and Kimi.ai analyzed all 13 lines
accurately with GPThelper, with Kimi.ai’s accuracy rising from 2 to 13 lines—a sevenfold increase, the
highest among the tested LLMs. Though Doubao still misinterpreted the second line, it showed marked
progress in Brainf language understanding with GPThelper.

6.2. Did llms illustrate the steps clearly?
When we are using LLMs we always find it generate a lot of unnecessary information before we get
the final result,this is because LLMs need to read system prompts before it generate the key part of the
answer.In this case,we compared both with or without the GPThelper to see how many useless lines was
output before it generate the code analyzing part.According to the bar chart(Figure 14),it was clear that
only ChatGPT benefit a little from the GPThelper,while Kimi.ai and doubao all have a at least 50 percent
useless lines reduction.This could highly improve user’s experience as it takes less time to generate and
the answer is even more clear and readable.

7. Conclusion
This study focuses on the performance of large language models (LLMs) in the domain-specific language
(DSL) field and explores strategies to enhance their effectiveness while minimizing computational
resources and time. By employing GPThelper, LLMs can analyze the input language type more efficiently,
which reduces unnecessary outputs and significantly enhances user experience by saving time and

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

285

improving overall efficiency. Furthermore, GPThelper has been shown to markedly increase the accuracy
of responses across various LLMs, thereby ensuring that LLMs provide more precise answers to DSL-
related queries. These findings underscore the potential of GPThelper to optimize LLM performance,
highlighting its scientific significance in advancing practical applications in the DSL domain.

References
[1] Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D et al. 2020 arXiv preprint

arXiv:2002.08155
[2] Brown T B 2020 arXiv preprint arXiv:2005.14165
[3] Hadi M U, Al Tashi Q, Shah A, Qureshi R, Muneer A, Irfan M, Zafar A, Shaikh M B, Akhtar N, Wu J et al. 2024 Authorea

Preprints
[4] Gu X, Chen M, Lin Y, Hu Y, Zhang H, Wan C, Wei Z, Xu Y and Wang J 2024 ACM Transactions on Software Engineering

and Methodology
[5] Netz L, Reimar J and Rumpe B 2024 arXiv preprint arXiv:2407.06146
[6] Bassamzadeh N and Methani C 2024 arXiv preprint arXiv:2407.02742
[7] Mateas M 2008 Software Studies\A lexicon. London: MIT 267–276
[8] Jun S W 2016 Computer Science and AI Laboratory, MIT
[9] Devlin J 2018 arXiv preprint arXiv:1810.04805

[10] Yenduri G, Ramalingam M, Selvi G C, Supriya Y, Srivastava G, Maddikunta P K R, Raj G D, Jhaveri R H, Prabadevi B,
Wang W et al. 2024 IEEE Access

[11] Fowler M 2010 Domain-specific languages (Pearson Education)
[12] Williams K, McCandless J and Gregg D 2010 Dynamic interpretation for dynamic scripting languages Proceedings of the

8th annual IEEE/ACM international symposium on Code generation and optimization pp 278–287
[13] Chen M, Tworek J, Jun H, Yuan Q, Pinto H P D O, Kaplan J, Edwards H, Burda Y, Joseph N, Brockman G et al. 2021

arXiv preprint arXiv:2107.03374
[14] Ouh E L, Gan B K S, Jin Shim K and Wlodkowski S 2023 Chatgpt, can you generate solutions for my coding exercises? an

evaluation on its effectiveness in an undergraduate java programming course. Proceedings of the 2023 Conference on
Innovation and Technology in Computer Science Education V. 1 pp 54–60

[15] Coello C E A, Alimam M N and Kouatly R 2024 Digital 4 114–125

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/131/2024.20795

286

