Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

Performance Shell Benchmark
Correctness, Efficiency, and Beyond

Yizhang Xu

Computer Science, Beijing University of Posts and Telecommunications, Beijing, China

xuyizhang @bupt.edu.cn

Abstract. Shell script is pivotal in tackling diverse real-world issues such as COVID-19 analytics, NLP
(Natural Language Processing), and data analysis. Yet, they can be prone to failure or inefficiency. This
paper rigorously assesses the reliability and speed of these benchmark shell scripts. For verifying output
integrity, this study leverage SHA-256 hashes and the diff utility for swift and accurate comparisons with
the correct outputs. To measure performance, the time command is employed to capture and log execution
times. Ultimately, our analysis reveals that 82/204 of the shell script outputs are accurate, demonstrating
robust performance even under the demands of large-scale data processing.

Keywords: Shell Script, PaSh, Reliability and Speed, Performance Measurement, SHA-256 hashes

1. Introduction

Shell[1] is a command-line interface for interacting with the operating system[2]. In the dynamic
landscape of computer science, shell scripts are indispensable tools that frequently engage with complex
text problems, playing a pivotal role in the functionality of computer systems[3]. It is not uncommon for
a system to house hundreds of these scripts, each a thread in the tapestry of system operations[4][5]. By
leveraging parallelization systems like POSH[6], PaSh[7], and DiSh[8], among others, computers can
significantly enhance script execution speed.

The core of the issue lies in the imperative to ensure the scripts’ accuracy and performance. A
deviation from the intended path or a substandard execution mode can lead to inefficiencies and, more
critically, to erroneous outcomes that undermine the integrity of the system’s operations[5].

To address these concerns, this paper embarks on a meticulous examination of shell scripts across
four repositories, including covid-mts, oneliners, nlp[9] and file-enc. Our approach involves a blend of
testing, debugging, and the provision of strategic advice aimed at optimizing the scripts’ performance.

Our findings are both revealing and instructive: out of 204 shell scripts tests, 82 successfully delivered
correct results. However, one script’s performance stood out, taking over 5 minutes to handle a 1GB text
file, underscoring the necessity for performance enhancements, especially when dealing with voluminous
data sets.

2. Related Work
This study focuses on evaluating and optimizing the performance of benchmark scripts[10], particularly
their efficiency and accuracy when processing large-scale datasets.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

250

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

PaSh[7] is a system for parallelizing shell scripts, and it generates benchmark scripts used for testing
in this study. PaSh highlights the widespread use of POSIX shell scripts in system management,
automation, and data processing, but also points out the inefficiency of their typically sequential
execution.

PaSh-JIT[11] focuses on the real-time aspects of script execution. PaSh-JIT dynamically interposes
parallelization during the execution of shell scripts. It ensures that the performance enhancements
achieved through parallelization do not compromise the script’s original functionality or correctness.
This approach aligns with our methodological emphasis on maintaining reliability while enhancing script
performance.

DiffStream[12] is a system designed to facilitate differential testing for stream processing programs.
DiffStream compares the outputs of different versions of a program or different programs running on
the same data streams, highlighting any inconsistencies between them. This study follows DiffStream’s
method and evaluate PaSh benchmark.

This study bears similarities to the work conducted by the KISTI team [13]. They also established
a standard dataset for assessing and comparing tool performance. However, our study emphasizes
simplifying the installation, execution, and data collection of benchmark suites through an automated
process, especially on the simulated the benchmark shell scripts.

The project "NVIDIA Performance Testing for Emulation of the Grace CPU”[14], is directly related
to this study. They developed a novel tool that consolidates other test suites for more convenient test-
ing of NVIDIA’s simulated CPU. Building upon their work, this study further explores how to enhance
benchmark efficiency and maintainability through script optimization and the use of high-level program-
ming languages.

3. Example of Benchmark Test
An Example: Take oneliners as an example of our evaluation. To evaluate the execution time of scripts
categorized under oneliners, you can follow these steps:

3.1. Inputs:
./inputs.sh

In the inputs.sh script, data is downloaded into the designated directory named inputs.

3.2. Run

./run.sh —--small

The run.sh script is responsible for executing all shell programs located in the scripts folder. It also logs
the time taken for each execution and appends this information to a file named oneliners.res within the
output folder. The "—small” option, when specified, indicates that the shell should be run with a smaller
dataset to expedite the execution process. Ideally, repeat this step five times and take the average as the
final time.

3.3. Verify

./verify.sh —--small

The verify.sh script performs a check on the correctness of the output generated by the shell programs
in the scripts folder. When the ”—small” option is applied, it ensures that the shell program outputs are
accurate even when run with the reduced dataset.

251

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

3.4. Clear

./cleanup.sh

The cleanup.sh script is designed to perform a cleanup operation by removing downloaded files and
generated outputs, thereby freeing up system memory.

3.5. Results

The results of these operations, including timing and verification outcomes, are compiled and recorded
in the oneliners.res file.

executing oneliners bash 08.05.2024 Monday 15:40:23 CST./scripts/nfa-regex.sh
2.460

./scripts/sort.sh 0.076

./scripts/top-n.sh 0.309

./scripts/wf.sh 0.285

./scripts/spell.sh 0.529

./scripts/diff.sh 0.138

./scripts/bi—-grams.sh 0.392

./scripts/set-diff.sh 0.187

./scripts/sort-sort.sh 0.126

./scripts/shortest-scripts.sh 0.698

4. Background
This paper depends on the following techniques and shell scripts code.

4.1. PaSh

PaSh[7] is an innovative system designed for the parallelization of POSIX shell scripts. At its core,
PaSh automatically transforms scripts into a dataflow graph, revealing potential parallel execution paths
through a series of semantic-preserving transformations. It then recompiles the optimized dataflow graph
back into a script, incorporating specific POSIX directives and PaSh’s proprietary runtime primitives to
ensure the efficiency and correctness of parallel execution. PaSh offers a concise annotation language
that allows command developers to easily mark the parallel characteristics of their commands. Tested
across multiple Unix scripts, PaSh has demonstrated significant performance improvements, affirming
its effectiveness in automating the parallelization of scripts.

4.2. Shell Script Benchmarks

Shell script benchmark[10] repository under binpash on GitHub is a curated collection of 16 benchmark
programs and 105 shell scripts enhanced with PaSh. This resource provides a robust platform for assess-
ing the impact of parallelization on shell script execution. It offers a diverse range of scripts, from simple
to complex, enabling a comprehensive evaluation of PaSh’s ability to accelerate shell-based workflows.
The repository is a valuable tool for developers and researchers working in parallel computing within the
shell scripting domain.

5. Implementation
To achieve the desired outcome, adhere to the following sequential steps:

5.1. Linux Environment and PaSh
Virtual Machine Installation: On your Windows or macOS system, begin by installing a virtual
machine software such as VMware. Proceed to set up an Ubuntu image file within this virtual

252

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

environment.

Installing PaSh: Install the PaSh by executing the following command in terminal[7]:
wget https://raw.githubusercontent.com/binpash/pash/main/scripts
/up.sh

sh up.sh

export PASH_TOP="$PWD/pash/"

Run PaSh with echo hi

"SPASH_TOP/pa.sh" —-c "echo hi"

5.2. Benchmark
Install the binpash/benchmark repository by executing the following command in terminal:

git clone https://github.com/binpash/benchmarks.git

For the vast majority of projects, run by imitating the Example section. If there are special requirements,
refer to the README file.

6. Evaluation
To conduct a comprehensive benchmark evaluation, we have selected four packages from the benchmark
suite and aim to address the following inquiries:

Q1: Do the shell scripts produce the correct outcomes?(5.1)
Q2: How does the shell script perform when processing extensive datasets?(5.2)

The run.sh executes all scripts and record the running time. The verify.sh compare the hash values of the
shell script outputs with the hash values of the expected answers[15]. If the scripts complete their tasks
in under 600 seconds when dealing with large-scale data, they are deemed efficient. The congruence of
these hashes will confirm the correctness of the shell script’s response.

6.1. Correctness
Overall, 40.2% (82/204) of the outputs matched the benchmark hashes. The detailed breakdown by
category is as follows:

o covid-mts: 0% (0/4) of outputs matched.
e nlp: 41.1% (78/190) of outputs matched.
o oneliners: 40% (4/10) of outputs matched.

The scripts nfa-regex.sh, spell.sh, top-n.sh, and wf.sh produced correct outputs. However, the verify.sh
script within the file-enc suite was empty, and the file-enc directory did not include the necessary folder
hashes. Due to these omissions, the paper is unable to verify the correctness of the shell scripts in the
file-enc.

6.2. Efficiency

Covid-mts: The execution time of the scripts in the covid-mts are detailed in Table 1. All the scripts
completed their task in 300s when dealing with a 3.4GB file. The 3.sh cost the most of time, taking
80.081s on average. The 1.sh and 2.sh cost neerly the same, separately using 66.137s and 66.069s. The
4.sh cost least, using 25.581s.

Oneliners: The execution times of the scripts in oneliners are detailed in Table 2. All scripts
completed their tasks in under 300s when processing 334MB of data. Among them, the nfa-regex.sh
script demonstrated the highest latency, with an average runtime of 126.397s. The average execution
time of bi-grams.sh is 66.214. The execution time of wf.sh, top-n.sh, spell.sh is around 45s, separately
45.137s, 45.090s, 43.705s. The average execution time of set-diff.sh is 34.588s. The execution time of

253

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

Table 1: running time of covid-mts scripts

covid-mts | AVG/s | MAX time/s | Min time/s
1.sh 66.137 66.589 65.766
2.sh 66.069 66.383 65.747
3.sh 80.081 80.725 79.639
4.sh 25.581 25.728 25.462

Table 2: running time of oneliners scripts

oneliners AVG/s | MAX time/s | Min time/s
nfa-regex.sh 126.397 127.222 126.010
bi-grams.sh 66.214 67.416 65.693
wif.sh 45.137 45.225 45.006
top-n.sh 45.090 45.158 45.038
spell.sh 43.705 44.169 43.531
set-diff.sh 34.588 34.840 34.472
sort-sort.sh 19.489 19.576 19.436
shortest-scripts.sh | 18.005 18.045 17.947
diff.sh 16.189 16.312 16.050
sort.sh 13.330 13.354 13.275

sort-sort.sh, shortest-scripts.sh and diff.sh is nearly the same, separately 19.489s, 18.005s and 16.189.
The sort.sh cost the least, whose average execution time is 13.330s. The relatively high runtime of nfa-
regex.sh can be attributed to its need to match complex regular expressions over the input data, which is
inherently a more resource-intensive task.

Nlp: The execution times of the scripts in oneliners are detailed in Table 3. All scripts completed
their tasks in under 300s when processing totally 71MB of data. The 8 3.3.sh runs the longest time,
on average 44.605s. Then execution times of the 4 3b.sh, 4 3.sh, 8.2 2.sh, 3 3.sh, 6 2.sh and
8.3 2.share are around 30s, separately 32.622s, 31.419s, 30.545s, 30.370s, 28.735s, 27.188s. Then
the execution times of 3 _2.sh,8 1.sh,1 1.sh,6 1 2.sh,2 1.sh, 8.2 1.sh are around 20s, separately
24.198s, 23.375s, 21.442s, 20.803s,19.857s, 19.676s. Then the execution times of 7_2.sh and 6 _4.sh
are nearly the same, separately 16.928s and 13.906s. Next, the execution times of 6 5.sh, 6 3.sh and
6 1 1.sh are around 9s, separately 9.415s, 9.008s and 8.359s. Then the execution times of 7 1.sh,
6 1.sh,2 2.sh,3 1.sh,and 6 7.sh are under 5s, separately 4.780s, 4.458s, 3.407s, 2.921s, 1.924s.

File-enc: The execution times of the scripts in file-enc are detailed in Table 4. The compress_ files.sh
runs 443.042s on average, whose execution exceeds 300 seconds. The encrypt_files.sh runs 84.374s on
average.

The compress files.sh compress the .png file using gzip command. The execution time of gzip
depends on the compression level. The encrypt files.sh transfrom the file into another file via CBC
encrypt mode.

7. Discussion

The file-enc has some bug. The first one is that in run.sh input _ dir is wrong and it needs go to the folder
inputs. Change like this can solve this bug.

in run.sh wrong in line 9 and 12
input_dir="inputs/pcap_data_small" # should go to inputs

The second is that in compress_ files.sh and in encrypt _files.sh and miss a folder too.

254

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

Table 3: running time of nlp scripts

nlp AVG/s | MAX time/s | Min time/s
1 1.sh | 21.442 21.787 21.148
2 1.sh | 19.857 20.050 19.664
2 2.sh 3.407 3.465 3.345
3_1l.sh 2.921 23.533 22.577
3 _2sh | 24.198 24.366 24.073
3_3sh | 30.370 30.588 20.080
4 3.sh | 30.545 31.124 29.963
4 3b.sh | 32.622 33.702 31.876
6_1.sh 4.458 4.693 4.371
6_1 lsh| 8359 8.668 8.128
6 1 2.sh | 20.803 21.029 20.608
6 2.sh | 28.735 29.131 28.418
6_3.sh 9.008 9.128 8.807
6 _4.sh | 13.906 14.187 13.677
6 5.sh 9.415 9.697 9.211
6 7.sh 1.924 1.980 1.879
7 l.sh 4.780 4.814 4.672
7 2.ssh | 16.928 17.180 16.788
8 l.sh | 23375 23.685 22.993
8.2 1.sh | 19.676 19.810 19.500
8.2 2.sh | 31.419 31.749 30.961
8.3 2.sh | 27.188 27.937 26.897
8 3.3.sh | 44.605 45.207 44.024

Table 4: running time of file-enc scripts

file-enc AVG/s | MAX time/s | Min time/s
compress_files.sh | 443.042 443.293 442.672
encrypt_files.sh | 84.374 84.676 84.068

in compress_files.sh, wrong in line 8
cat $1/$item | gzip -1 -c > $2/Soutput_name #miss S1

in encrypt_files.sh, wrong in line 17
cat $1/$item | pure_func > $2/Soutput_name # miss S1 too

After add the folder, scripts can run successfully.

8. Conclusion
The paper test several repositories in benchmark and evaluate the correctness and efficiency. Most of the
shell scripts may output in a wrong format which cause the low correct rate. Most execution time of shell
scripts is less than 300s when processing in the large-scale data, showing efficiency of these shell.

All the data are open source and available for download:
https://github.com/yiz853793/benchmark-test.

References
[1] Chris Johnson. Shell Scripting Recipes: A Problem-solution Approach. Apress, 2006.
[2] Cameron Newham. Learning the bash shell: Unix shell programming. > O’Reilly Media, Inc.”, 2005.

255

https://github.com/yiz853793/benchmark-test

(3]
(4]

(5]
(6]
(7]
(8]

(9]

[10]
[11]

[12]
[13]

[14]
[15]

Proceedings of the 2nd International Conference on Machine Learning and Automation
DOLI: 10.54254/2755-2721/132/2024.20797

Ganesh Sanjiv Naik. Learning Linux Shell Scripting: Leverage the power of shell scripts to solve real-world problems.
Packt Publishing Ltd, 2018.

Leonardo Leite, Carlos Eduardo Moreira, Daniel Cordeiro, Marco Aurélio Gerosa, and Fabio Kon. Deploying large-scale
service compositions on the cloud with the choreos enactment engine. In 2014 IEEE 13th international symposium on
network computing and applications, pages 121-128. IEEE, 2014.

Andre Goforth. The role and impact of software coding standards on system integrity. In AIAA Infotech@ Aerospace
(I@ A) Conference, page 5222, 2013.

Deepti Raghavan, Sadjad Fouladi, Philip Levis, and Matei Zaharia. {POSH}: A {Data-Aware} shell. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 617-631, 2020.

Nikos Vasilakis and Konstantinos Kallas. Pash: Light-touch data-parallel shell processing. In Proceedings of the Sixteenth
European Conference on Computer Systems, pages 49-66, 2021.

Tammam Mustafa, Konstantinos Kallas, Pratyush Das, and Nikos Vasilakis. {DiSh}: Dynamic {Shell-Script}
distribution. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 341—
356, 2023.

Dan Ofer, Nadav Brandes, and Michal Linial. The language of proteins: Nlp, machine learning & protein sequences.
Computational and Structural Biotechnology Journal, 19:1750-1758, 2021.

Dimitris Karnikis and Tammam Mustafa. Binpash benchmark.

Tammam Mustafa. Parallel and Distributed Just-in-Time Shell Script Compilation. PhD thesis, Massachusetts Institute
of Technology, 2022.

Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. Diffstream: differential output testing for stream
processing programs. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1-29, 2020.

Jinsuk Kim, Dong-Hoon Yoo, Heejin Jang, and Kimoon Jeong. Webshark 1.0: a benchmark collection for malicious web
shell detection. Journal of Information Processing Systems, 11(2):229-238, 2015.

Gong Fan. NVIDIA Performance Testing for Emulation of the Grace CPU. PhD thesis, NVIDIA Corporation, 2021.

Olga Manankova, Mubarak Yakubova, and Alimjan Baikenov. Cryptanalysis the sha-256 hash function using rainbow
tables. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 10(4):930-944, 2022.

256

