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Abstract: This paper delves into the analysis of various diffusion models, focusing on their 

utilization of text-conditional sampling and assessment using the contrastive language-image 

pre-training (CLIP) score as a metric. Leveraging Bidirectional Transformers (BERT) and 

Vision Transformers (ViT) within the CLIP model framework, it crucially compares models 

incorporating transformer blocks with those that do not. Specifically, it examines the 

structures of latent diffusion models and diffusion transformer models, emphasizing the use 

of Unet and Transformer block decoders, respectively. Additionally, the study explores 

different prompts to generate similar images, aiming to optimize conditioning training for 

text-to-image generation. Furthermore, the paper investigates the performance of the Latent 

Diffusion Model (LDM) and the DiT model in object generation, analyzing their interaction 

with text embeddings and prompt structures. The findings underscore the significance of 

prompt structures on model performance, with implications for future research into 

multimodal models and prompt optimization. 
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1. Introduction 

Generative models are models aim to produce a distribution that resembles the training data 

distribution or true distribution. The idea of generative models originated in the 1980s and its primary 

objective was to train models in an unsupervised way, reducing the amount of labor in collecting data 

for supervised learning [1]. Since then, generative models have developed and are performing 

exceptionally in producing high resolution, they have produced remarkable results in diverse realms 

of image processing. These achievements encompass image synthesis, modification, and even image 

classification [2]. Obtaining such successes relies on gaining representative features from the data, 

specifically in latent diffusion models, this involves extracting latent information of high-dimension 

data in lower-dimension spaces. 

Before the diffusion models came along, Generative Adversarial Networks (GANs) and 

Variational Autoencoder (VAE) were the most popular image generation models, these two types of 

image generation models already obtained notable performance in generating realistic images [3]. 

The introduction of the diffusion model, a form of generative model that stems from Probabilistic 

Diffusion, has an enhanced ability to create more detailed and higher-quality images [3]. Later more 

developed models, e.g. latent diffusion model, incorporated autoencoders and conditional sampling 
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techniques. This allowed the models to be less computationally expensive, in the meantime, the 

generation outputs were also more editable. The purpose of this paper is to assess different diffusion 

models and to analyze the results [4]. 

Since the advent of transformers (Vaswani, 2017), the field of machine learning, from natural 

language processing to computer vision, even reinforcement learning, have been revolutionized. The 

transformer model further enhanced the capability of feature extraction [5]. In 2023, Peebels and Xie 

constructed a new diffusion model incorporating the entire transformer block as its backbone, 

replacing the Unet construction [6]. This backbone sets the stage for later development in the diffusion 

model and gives the diffusion model better scaling ability. In this study, the author also compares this 

DiT model with LDM, the model DiT is based on. The contrastive language-image pre-training (CLIP) 

model is a multi-modality pretrained contrastive learning model that combines language training 

signal, or text signal, and vision signal to gain features of an image [7]. CLIP score is a score metric 

based on the CLIP model. This score is obtained by first acquiring a 512-D embedding from the 

image and the prompt generated the image, and then by using these embeddings for calculating a 

cosine similarity, this similarity value is the CLIP score [8]. This score aims to accurately depict the 

relationship between an image and the phrase that describes this image, the higher the cosine 

similarity is, the closer the relationship between the corresponding embedding pairs is. 

This paper focuses on analyzing various diffusion models utilizing text-conditional sampling with 

the CLIP score as a metric. The CLIP model utilizes Bidirectional Transformers (BERT) and Vision 

Transformers (ViT) to extract text and image embeddings from image captions and the images 

themselves [9][10]. As the CLIP model is closely tied to transformer architecture, it's crucial to 

compare diffusion models that incorporate transformer blocks with those that do not use transformers 

as decoders. This study focuses on comparing the structures of latent diffusion models and diffusion 

transformer models. The former employs a Unet decoder, while the latter integrates a Transformer 

block as its decoder. Additionally, this study explores various prompts aimed at generating similar 

images, seeking suitable forms of textual cues to aid in training diffusion models with text-to-image 

generation capabilities and to inform future research endeavors.   

2. Methodology  

2.1. Dataset and Preprocessing 

This study focused on four image datasets, Cifar10, Cifar100, and ImageNet [11][12]. Cifar10 and 

Cifar100 both are created by Alex Krizhevsky, et al. Each of the Cifar10 and Cifar100 datasets 

contains 60,000 labeled colored images with size of 32×32. Cifar10 and Cifar100, as their names 

suggest, are composed of 10 categories of pictures and 100 categories of pictures respectively. 

ImageNet was introduced by Jia Deng et al in 2009. There are different types of ImageNet datasets, 

they are all made for non-commercial use. The most commonly used ImageNet dataset is 

ImageNet10K, a dataset with 1000 classes that contains over 1.2 million colored images with varying 

sizes. MNIST was introduced in 1998 by Yann LeCun, it is a dataset containing 70000 handwritten 

images for the 10 digits, 60000 for training, and 10000 for testing. They are all in grayscale and with 

the size of 28×28. These datasets have simple labels for each image, this paper uses the images’ class 

labels as base-prompts to generate images. On top of that, this study gradually adds in different levels 

of details to the class label for image generation to compare CLIP scores. 

2.2. Architecture 

This paper examines the accuracy of the CLIP score when using DiT and latent diffusion models for 

image generation. Since the DiT model lacks a pretrained text conditioning model, the author 
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employed the class names from the ImageNet dataset as image prompts. The study generated 500 

images in total, with 5 images per class for 10 to 100 classes simultaneously. To manage the vast  

number of ImageNet classes, the author randomly selected 100 classes for image generation. After 

generating the images using latent diffusion and DiT models, they standardized the image sizes to 

224 × 224 pixels. Subsequently, both the images and their corresponding description texts underwent 

processing through ViT and text transformers to obtain embeddings. These embeddings were 

normalized and utilized to compute an averaged cosine similarity for subsequent analysis. The 

pipeline is depicted in figure 1. The text prompt is the input of text to image generation model, or the 

it is the name of the image class (in DiT). Then it goes through the text transformer to get the 

embedding. The generated image goes through ViT/14 to get an embedding. At the end, the 

embeddings are normalized and embeddings in the same class are used to gain an average cosine 

similarity. 

 

Figure 1: Pipeline for the evaluation, LDM and DiT (Photo/Picture credit: Original) 

2.2.1. Variational Autoencoder (VAE)  

The VAE is the first step for both the latent diffusion model and the Diffusion Transformer model. 

This VAE model assumes the image dataset 𝑿 consists of n-many i.i.d data 𝒙𝑖 , 𝑖 =  1, . . . , 𝑛. The 

encoder 𝐸(𝒙𝑖) of VAE tries to acquire latent representation 𝒛𝑖
 for each 𝒙𝑖, the docoder 𝐷(𝑧) tries to 

predict the image from a given latent 𝒛. Specifically in the latent diffusion model, the input 𝒙 is an 

image with size of H ×  W ×  3, and 𝒛 is a latent of the image z with dimension of ℎ ×  𝑤 ×  𝑐, 

smaller than image 𝒙 by a downsampling factor 𝑓 =  
𝐻

ℎ
=  

𝑊

𝑤
, here 𝑓 =  2𝑚  for some 𝑚 ∈ ℕ   . In 

comparison to a 1-dimensional latent in some works of the LDM paper’s authors, this 𝒛 has a 2-

dimensional structure, this is an attempt to retain more information from the original image [4]. The 

diffusion model uses a VAE with KL-regularization, after extracting the latent 𝒛 using VAE, the 

representation 𝒛 then goes into the diffusion process. 
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2.2.2. Denoising Diffusion Probailistic Models (DDPMs) 

The Diffusion process consists of 2 stages, a noise-adding forward process and a reverse process for 

denoising. Both of these processes are Markov chains. The forward process progressively diffuses 

Gaussian noise into the input image, while the reverse process removes the noise to acquire an image. 

In the Forward process, the DDPM grabs an image data x0 from the given dataset. Assume there 

are 𝑇 many timesteps in the forward process, in a certain timestep 𝑡, such that 1 ≤  𝑡 ≤  𝑇, the 

noised image data 𝒙𝑡 is obtained as shown in the following formula: 

 𝒙𝑡  =  (�̅�𝑡)
1

2𝑥0 +  (1 − �̅�𝑡𝜖)
1

2 (1) 

where 𝜖 is a Gaussian noise with the same dimension as 𝒙, 𝛼𝑡  is a scaling factor indicating at given 

time step 𝑡, what portion of sampled Gaussian noise is added to the original image 𝒙. 𝛼𝑡 ∶=  1 −  𝛽𝑡  , 
where β

t
 is a variance schedule that increases as 𝑡 increases from 1 to 𝑇. At time step 𝑇, the original 

image 𝒙0 is fully converted to a Gaussian noise 𝒙𝑇. 

The Reverse process is autoregressive, it slowly reduces the noise from the Gaussian noise 𝒙𝑇 to 

reconstruct the original image. The Sampling process focuses on the reverse process, it uses a 

predicted noise 𝝐𝜃 , a noise 𝒛 sampled from N (0,1), given the timestep 𝒕, the clearer image in the 

next reverse timestep 𝑡 − 1 is given as: 

 𝒙𝑡−1 =   (�̅�𝑡)
−

1

2  (𝒙𝑡 − (
1 − 𝛼𝑡

 (1−�̅�𝑡𝜖)

1

2

) 𝜖𝜃(𝒙𝑡 , 𝑡)) + 𝜎𝑡𝒛 (2) 

where 𝜎𝑡𝑰 =  𝜮𝜃(𝒙𝑡 , 𝑡) is the covariance matrix of the conditional probability distribution 

𝑝𝜃(𝒙𝑡−1|𝒙𝑡) ∶= N (𝒙𝑡−1; 𝜇𝜃(𝒙𝑡, 𝑡), 𝜮𝜃(𝒙𝑡, 𝑡)) 

2.2.3. DiT Block 

The diffusion transformer block (DiT) is a replacement for the Unet structure to improve the 

scalability of the latent diffusion model. This block is based on the ViT architecture, it uses patches 

to extract information from the image latent in the patchify layer, which is also the first layer of the 

DiT model. In this layer, it turns the latent of the noised image, with the size of 𝐼 ×  𝐼 ×  𝐶 to an 

input token with length 𝑇 and dimension 𝑑. Where 𝑇 =  (
𝐼

𝑝
)2, and 𝑝 is the length of one patch, each 

image can be breakdown into T many patches. After patchifying, input token and the conditioning 

will be passed to the DiT block. There are four types of DiT blocks, the one that has the best FID-

50K performance is the block called the adaLN-Zero block. Such type of DiT block combines 

adaptive normalization layer and a zero-initialization in the final convolutional layer in the DiT block, 

after this, the DiT block then goes into the residual connection process. 

2.2.4. CLIP Score 

CLIP Score utilized the CLIP model. In this paper, ViT model is used to obtain image embeddings 

and text transfomrer is used to obtain text embeddings in the CLIP model. 5 images or 10 images are 

generated from the same class and a total of the embeddings are normalized to the interval [0, 1], 

these embeddings is then evaluated with all the text prompts that used to generate the images or those 

that describe the images, using the cosine similarity. The similarity values are averaged between all 

the images in the same class. For example, if each class has 5 images, the mean of the 5 similarity 

values will be the final average score for this class. Comparisons of CLIP Scores. In this paper, LDM 

is pretrained by using the LAION5B dataset and DiT model is pretrained by using ImageNet dataset. 
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This paper compares the CLIP Scores for the generated images and the images from the original 

dataset by using these two models. 

 

Figure 2: The CLIP score (Photo/Picture credit: Original) 

3. Results and Discussion 

In order to evaluate the behavior of the CLIP score relating to the description sentence in this study, 

the author finds CLIP scores using various types of prompts. First, the author evaluates the CLIP 

Scores between the pictures of the datasets with the class labels. In addition, the author kept the 

default setting of the CLIP model, adding a “This is” phrase in front of the class label. For example, 

in the Cifar100 dataset, the prompts look like “This is aquatic mammal beaver”, in the Cifar10 dataset, 

the prompts look like “This is airplane”. Second, the CLIP score is generated by calculating the 

generated graph of the diffusion model and the text of the generated picture, or the name of its 

corresponding category. 

As Shown in figure 2 the images Cifar10 dataset and the ImageNet dataset have similar CLIP 

Scores with the generated images. However, there is a large difference between the CLIP Scores of 

the Cifar100 dataset and the generated images. A possible reason for this is the classifier prompts for 

the Cifar100 are formed by combining the superclass labels and the specific class labels. As 

mentioned before, the Cifar100 dataset’s labels look like “aquatic mammal beaver”, and the Cifar10 

dataset’s class labels look like “airplane”. This is shown in figure 3, with the removal of the superclass 

labels in Cifar100, the CLIP Score decreases by 13% of the original Score. Two causes could lead to 

such a result. First, the difference between prompts that generated the image and the prompts that 

removed the superclass names are now different. Second, the prompts without superclass names now 

have reduced relevant information than the original prompt. Comparison of CLIP Scores between 

prompts that used superclass and those without superclass added. 
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Figure 3: The comparison of CLIP score (Photo/Picture credit: Original) 

4. Conclusion 

This study evaluates the performance of the LDM and the DiT model, alongside examining the impact 

of prompt structure on the CLIP Score. Given that LDM utilizes text embeddings based on the CLIP 

model, investigating how generative models interact with these embeddings offers insights into 

enhancing the conditioning training process. Comparisons of CLIP scores are made between original 

dataset images and those generated by diffusion models. Initially, CLIP scores are calculated against 

the class names of images in all datasets. Subsequently, superclass names are excluded from prompts 

in the Cifar100 dataset for further CLIP score calculations. The findings reveal higher CLIP scores 

for generated images across all datasets, particularly evident when comparing Cifar100 dataset 

images with those generated using Cifar100 class names as prompts. Further analysis indicates a 

decrease in CLIP scores upon the removal of superclass prompts. While time constraints limited 

additional comparisons, future research will explore the performance of the multimodal DiT model, 

combining CLIP with DiT, and assess CLIP scores for various prompt structures in text conditioning 

DiT models. Additionally, the investigation into the disparities in CLIP scores for LDM models 

concerning the Cifar100 dataset is planned. 
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