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Abstract: Traditional high-performance computing scheduling algorithms have been unable 

to satisfy the intricate demands of deep learning workloads. With advances in deep learning, 

tasks exhibit attributes including multi-tenancy, multi-resource consumption, and intense 

variability, introducing unprecedented difficulties for resource coordination. To address these 

challenges, scheduling approaches must be optimized regarding fairness, job completion 

timeframe (JCT), and hardware utilization. This review paper provides an analysis of primary 

deep learning scheduling algorithms, focusing on distinct techniques for improving fairness 

and JCT. Regarding fairness optimization, this review paper contrasts strategies dependent 

on runtime and non-runtime resource redistribution, including Dorm, Gandivafair, Themis, 

Astraea, Shockwave, Gavel and Sia, applicable in varying computing environments. For JCT 

optimization, the review paper examines scheduling algorithms based on heuristic functions 

and machine learning methods like Tiresias, E-LAS, Optimus, Sched2, Philly and Gandiva, 

emphasizing the impact of task priorities, resource allocation and job packing on completion 

time. By contrasting the strengths and limitations of these approaches, the review paper offers 

readers a comprehensive perspective and forecasts forthcoming directions for deep learning 

scheduling algorithm progress. 
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1. Introduction 

In the past decade, the rapid development of deep learning has profoundly transformed fields such as 

computer vision [1], natural language processing [2], and autonomous driving [3]. While deep 

learning research primarily focuses on algorithm optimization, fully leveraging its potential in 

industrial applications requires optimizing computational scheduling, which introduces a critical 

challenge: how to efficiently schedule deep learning computing tasks. This challenge mainly arises 

from the differences between traditional high-performance computing (HPC) and deep learning 

computing. Traditional HPC scheduling schemes, such as Shortest Remaining Time First (SRTF) [4], 

are designed for single-resource scheduling. However, deep learning tasks require the coordination 

of multiple resources, including CPUs, GPUs, RAM, and bandwidth. Different jobs demand varying 

combinations of resources: some tasks are GPU-intensive, while others are more memory-intensive. 

Data centers typically deploy a variety of hardware, especially GPUs, which differ significantly in 

terms of models and performance. Some GPUs support Multi-Instance GPU (MIG) technology [5], 

while others do not, further complicating resource allocation. Additionally, different deep learning 
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models have varying affinities for GPUs, making the allocation of GPUs to tasks even more complex. 

Traditional scheduling algorithms are inadequate for the demands of multi-resource and 

heterogeneous scheduling in deep learning tasks. 

Elastic resource sharing in a cloud environment must overcome various obstacles. Highly parallel 

tasks with multi-tenant resource utilization require scheduling algorithms to consider fairness across 

multiple dimensions to prevent resource waste and task starvation. Furthermore, the dynamic nature 

of deep learning tasks adds greater complexity. During training, computational needs fluctuate 

unpredictably, while static allocation plans fail to adapt, leading to periods of both abundance and 

scarcity, resulting in suboptimal resource utilization. For example, models may require intensive 

processing at first, but this need may decrease as the model progresses. Additionally, these tasks are 

often iterative, with each task depending on the results of the previous one, making scheduling even 

more challenging. 

In order to mitigate the disadvantages of static resource strategies and improve the allocation's 

rationality, thus increasing task efficiency, researchers have proposed real-time resource allocation 

strategies. Whether using rule-based heuristic functions, online learning, or reinforcement learning, 

all of these real-time methods require real-time data collection and analysis, which impose higher 

demands on the system's real-time processing capabilities. Moreover, dynamic resource scheduling 

inevitably leads to some degree of resource fragmentation. To efficiently utilize resources, scheduling 

strategies need to adopt methods such as resource sharing to optimize resource allocation and mitigate 

fragmentation. Additionally, deep learning training tasks often run for extended periods, sometimes 

requiring weeks or even months. Therefore, scheduling strategies must be capable of effectively 

saving task progress (e.g., gradients and model parameters) to enable task suspension and recovery. 

This introduces the need for systems that can track job status and support task migration and recovery 

at different stages. 

The purpose of this review is to systematically compare and analyze existing deep learning 

scheduling strategies, focusing on two key performance metrics: job completion time (JCT) and 

fairness. Through this work, we aim to provide valuable insights for both researchers and practitioners 

in the field, while also offering predictions for future trends and recommendations to further advance 

deep learning scheduling strategies. The paper is structured as follows: In Chapter 2, I provide the 

background, key characteristics, and the main challenges of deep learning job scheduling. Chapter 3 

explores common strategies for fairness and JCT optimization, discussing their applications, benefits, 

and limitations. Finally, in Chapter 4, I propose potential directions for future research, building on 

existing scheduling strategies. 

2. Challenges in Scheduling Computational Resources 

2.1. Dynamic Multi-resource Demands in Multi-tenancy Environments 

The first challenge when transitioning from high-performance to deep learning computing is how to 

efficiently allocate multiple resources. The execution of tasks requires the collaboration of multiple 

resources, and a lack of coordination or inadequate allocation can lead to waste and inefficiency. If 

resources do not complement each other or align with task demands, it will result in resource waste 

and task starvation. Moreover, deep learning tasks exhibit significant fluctuations in resource 

requirements as training progresses. Initially, GPU resources are heavily utilized, while later stages 

may shift demands towards CPU or memory. The dynamic variability of resource needs during deep 

learning computation places higher demands on real-time resource allocation, leading to more 

frequent resource waste (such as fragmentation) and task starvation. Traditional scheduling 

algorithms, such as Gang Scheduling and Dominant Resource Fairness (DRF) [6], assume a static 

resource allocation model. Once resources are assigned at task creation, they remain fixed, regardless 
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of the changing resource needs throughout task execution. While these methods ensure fairness under 

certain conditions, they often lead to inefficient resource usage and unfair allocation, especially when 

resource demands fluctuate dynamically. To more efficiently meet dynamic resource needs, a real-

time data collection and analysis system must be implemented. Based on the data and the results of 

this system’s analysis, more intelligent real-time reallocation strategies need to be adopted. 

Additionally, newer GPUs support MIG, offering finer-grained resource sharing, but MIG cannot 

completely resolve fragmentation. To mitigate fragmentation, effective packing strategies are crucial. 

Moreover, the introduction of multi-tenancy in the cloud complicates the fairness of scheduling 

strategies, making the issue of fairness more complex. 

2.2. Resource Heterogeneity and Placement Sensitivity 

Traditional scheduling strategies were designed for single-resource tasks, but modern deep learning 

workloads require the orchestration of diverse heterogeneous resources, such as powerful GPUs, 

flexible CPUs, expansive memory caches, and high-bandwidth networks. Both resource 

heterogeneity and placement sensitivity demand more refined resource allocation and scheduling 

strategies. Data centers now feature an array of hardware resources, each with significant performance 

disparities. Allocating incompatible resources to tasks may delay training execution, particularly 

when an unsuitable GPU class is used. Additionally, different models exhibit varying affinities for 

specific GPU types, meaning scheduling strategies must account for hardware differences and the 

specific needs of trained models. Whether it is data parallelism, pipeline parallelism, or model 

parallelism, communication efficiency between GPUs is a bottleneck during training. In this context, 

consolidated placement can effectively reduce communication overhead compared to topology-

agnostic placement, thus improving resource utilization and overall system performance. 

2.3. Iterative Nature and Task Dependencies 

The dependencies in deep learning computing arise from two sources. The first is the dependencies 

between tasks with different roles, such as the model training task depending on the data 

preprocessing task and the feature extraction task. The second comes from within the training task 

itself, because the training process has an iterative nature, where the input of the next step is the output 

of the previous step. These dependencies significantly impact the resource allocation process. As a 

result, the process of fairness and JCT optimization not only needs to consider efficient resource 

allocation but also needs to consider the inherent nature of task dependencies, such as the need to 

account for these dependencies when calculating task priorities. 

3. Scheduling Strategies 

In the field of software engineering, there is a widespread consensus that there is no "silver bullet" 

solution. Similarly, in deep learning computation, there is no universal scheduling strategy that can 

be applied to all scenarios. Therefore, in order to deeply analyze the application scenarios, advantages, 

and disadvantages of different scheduling strategies, we need to discuss them in specific contexts. 

This chapter will analyze the characteristics and applicability of various scheduling strategies based 

on different scenarios, such as whether heterogeneous GPUs are used, whether GPU sharing is based 

on the time dimension, and other relevant factors. 

3.1. The comparison of fairness optimization strategies 

When applying traditional HPC scheduling strategies to the emerging field of deep learning 

computation, one of the first challenges is transitioning from single-resource scheduling to multi-
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resource scheduling. Gang Scheduling, a commonly used multi-resource scheduling strategy, solves 

the problem of task dependencies on multiple resources by allocating all the necessary hardware 

resources to a task simultaneously. However, the "all-or-nothing" strategy of Gang Scheduling can 

lead to resource wastage: when some resources are idle, tasks still have to wait for other resources to 

become available, thereby reducing resource utilization and potentially causing inefficiency and 

unfairness. Furthermore, Gang Scheduling relies on static resource declarations made at task creation, 

which cannot be adjusted dynamically according to the task's changing needs, limiting its adaptability. 

To overcome these challenges, many modern scheduling strategies have begun exploring more 

flexible resource management approaches, including dynamic resource scheduling and real-time 

resource demand-based scheduling mechanisms, in order to improve resource utilization and fairness. 

First, this study will categorize scheduling strategies based on their ability to support resource transfer 

between tasks during execution, rather than relying on traditional distinctions such as preemptive, 

non-preemptive, or resource-waiting approaches. 

3.1.1. Runtime Resource Reallocation 

With the ongoing evolution of GPU devices in data centers, the deep learning computing environment 

has gradually transitioned from single-tenant, homogeneous GPU resource environments to multi-

tenant, heterogeneous ones, driven by the increasing demand for scalability, resource sharing, and 

specialized computing capabilities.  

In homogeneous GPU resource environments, resource reallocation during task execution serves 

as a time-based fairness strategy for resource sharing, aiming to achieve fairer resource allocation 

through various algorithmic approaches. For instance, Themis [7] introduces Finish-time Fairness 

(FTF) as a fairness metric, prioritizing tasks that have fallen behind due to insufficient resources, 

thereby promoting more balanced completion times across tasks. FTF is particularly suitable for 

scenarios with significant task demand differences, as it focuses on allocating resources to tasks that 

are behind, striving for a balanced completion time. However, this may result in delays for lower-

priority tasks, as they are likely to receive less attention in favor of higher-priority tasks. Moreover, 

FTF primarily focuses on fine-grained resource scheduling between tasks, which may not effectively 

address the complex resource fairness issues in multi-tenant, multi-job environments. Astraea [8], in 

contrast, introduces Long-Term GPU-time Fairness to ensure a more equitable distribution of GPU 

resources across different jobs and users over the long term. By adopting the Two-Level Max-Min 

Scheduling strategy, Astraea first ensures fairness between different users and, based on this, 

guarantees long-term resource fairness for jobs within each user. However, while Astraea provides 

better long-term fairness, particularly in multi-tenant environments, it tends to respond to and 

schedule short-term tasks more slowly due to its emphasis on long-term resource allocation. 

Shockwave [9] employs a dynamic market mechanism to allocate resource usage time fairly, based 

on task demands and resource competition, thereby balancing both efficiency and fairness. While 

Shockwave offers high dynamism and flexibility, making it ideal for volatile environments, its real-

time computation demands are often relatively high.  

In heterogeneous GPU resource environments, scheduling strategies require more complex 

mechanisms to differentiate and measure the computational power of different GPU resources, in 

order to achieve fair resource allocation when facing disparities in computational power and various 

resource configurations. Currently, common fairness scheduling methods in heterogeneous GPU 

resource scheduling include lottery-based scheduling and linear programming-based scheduling 

approaches. The lottery mechanism is indeed a static resource allocation strategy. It allocates 

resources based on the computational requirements of tasks (through the assignment of lottery tickets), 

rather than dynamically adjusting resource allocation based on changes that occur during task 

execution. Therefore, the lottery mechanism itself does not possess the ability to dynamically adjust 
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resource allocation. Although both Gavel [10] and Sia [11] use linear programming to address the 

heterogeneity of GPU resources, their underlying logic differs. Gavel incorporates heterogeneous 

GPUs as constraints into the linear programming model and optimizes the time tasks use GPU 

resources to ensure fair resource allocation for all tasks. In contrast, Sia also incorporates 

heterogeneous GPUs as constraints into the linear programming model but optimizes task priorities 

to allocate resources more reasonably, thereby achieving fairness. Gavel is better suited for scenarios 

with more balanced task demands, but due to the lack of a priority mechanism, it may lead to longer 

waiting times for certain tasks. In contrast, Sia offers stronger dynamism by optimizing priorities to 

flexibly adjust resource allocation, but this may also result in lower-priority tasks being starved of 

resources for extended periods. 

3.1.2. Non-Runtime Resource Reallocation 

Traditional static single-resource scheduling algorithms, such as Round Robin Scheduling and Max-

Min Fair Scheduling, can only achieve the fair allocation of a single resource in a static way. However, 

these algorithms cannot dynamically adjust resource allocation during task execution and struggle to 

effectively handle heterogeneous resources, particularly in heterogeneous GPU environments. They 

fail to account for performance differences across resources in task demands. Dorm [12] and 

Gandivafair [13] both extend static fairness scheduling to multi-resource scenarios. The former 

achieves Fair Resource Allocation by implementing DRF, while the latter takes Gang-aware Lottery 

as an example of providing better support and opportunities for task communities willing to fight 

together in order to secure fair results. Such a scheme may cause long waits for tasks with large 

disparities in dominant resource requirements, while non-dominant resources remain underutilized. 

Meanwhile, Gang-aware Lottery combines the techniques of Gang Scheduling and Lottery 

Scheduling. It assigns resources to a task group, thereby taking into account task dependencies and 

individual tasks in this collection. By means of the lottery mechanism, it enhances resource utilization 

efficiency. Whenever possible, all needed hardware resources are allocated simultaneously - reducing 

idle time. Moreover, the randomness introduced by the lottery mechanism facilitates fairness in 

heterogeneous GPU resources allocation. Gang-aware Lottery is especially effective in environments 

typified by high task dependency and low resource availability. But, by its very nature, Gang-aware 

Lottery is partially based on randomness and hence may enable the starvation of low-priority tasks. 

3.2. The comparison of jct optimization strategies 

The use of more reasonable heuristic functions to more scientifically calculate task priorities is one 

of the most common methods to reduce JCT. For instance, Tiresias [14] combines the Least 

Acquisition Service (LAS) and Multi-Level Feedback Queue (MLFQ) strategies. Unlike strategies 

based solely on remaining execution time, LAS prioritizes tasks with lower resource requirements 

but longer execution times, ensuring that these lightweight tasks receive higher priority. Meanwhile, 

MLFQ dynamically adjusts priorities: tasks that consume more CPU time are gradually downgraded 

to lower-priority queues, while tasks with the lowest CPU usage are promoted to higher-priority 

queues. This discrete priority system reduces frequent preemptions and context switches, 

significantly improving overall system performance. E-LAS [15], based on Tiresias, uses the real-

time epoch progress rate to measure task progress, ensuring that tasks with slower progress receive 

more resources in a timely manner to prevent certain tasks from occupying resources for extended 

periods, thereby further improving average job timing efficiency. 

In addition to traditional heuristic functions, machine learning approaches have also made 

significant contributions to improving average job timing efficiency. Optimus [16] predicts the 

execution time of tasks under the current resources in real-time through an online resource-
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performance model and dynamically adjusts resource allocation based on the prediction results to 

reduce JCT. It collects hardware resource usage data and task execution data during task execution 

and uses this data to train the online resource-performance model. The online model is updated in 

real-time through online learning to ensure its predictive accuracy. By predicting the resource 

requirements and execution time of tasks, Optimus intelligently schedules tasks to the most suitable 

computing resources. The accuracy of Optimus' predictions requires high real-time monitoring and 

data collection. Since online learning necessitates real-time model updates, it incurs significant 

computational overhead, which becomes more pronounced in large-scale data centers. Furthermore, 

although online learning continuously updates the model, ensuring its accuracy is challenging in 

environments with complex, heterogeneous hardware resources and diverse task conditions. 

Compared to online learning strategies, reinforcement learning strategies can learn through 

interaction with the environment, without relying on historical training data, and are capable of 

making long-term decisions and forming complex scheduling strategies. Sched2 [17] adopts a Q-

network-based reinforcement learning scheduler. It combines hardware resource states and task 

requirements into the state space, treats all possible resource allocations and scheduling decisions as 

the action space, and evaluates the value of each action using the Q-value function. Through 

continuous evaluation and feedback, the model gradually learns the optimal scheduling strategy. 

However, reinforcement learning incurs high training costs because it requires extensive interaction 

and computational resources, and convergence typically takes a long time. Additionally, due to its 

tendency to optimize long-term scheduling, it struggles to provide quick and effective feedback in 

the face of real-time, drastic changes. Philly [18] combines the advantages of online learning and 

reinforcement learning. The Q-value function is updated not only through interaction with the 

environment during the reinforcement learning process but also adjusted based on real-time resource 

conditions and task demands. In this way, Philly leverages the long-term benefits of reinforcement 

learning strategies for scheduling while also being better able to respond to real-time dynamic 

changes. 

The placement rules of jobs play a critical role in influencing Job Completion Time (JCT), 

especially due to the limited transmission bandwidth between GPUs. Scheduling strategies like Philly, 

Tiresias, and E-LAS strive to meet the strict placement locality requirements to optimize performance. 

However, in some cases, although idle resources that meet task requirements are available, tasks may 

not be allocated to these resources because they fail to satisfy the placement locality constraints. This 

can result in resource fragmentation. Task packing strategies can help alleviate resource 

fragmentation to some extent. For example, Gandiva [19] improves cluster utilization through job 

packing and incorporates a custom suspend-resume mechanism to safely pause jobs. Additionally, 

Gandiva employs a migration mechanism to manage cluster fragmentation and handle conflicting 

jobs. However, its packing-based scheduling approach is somewhat greedy and lacks awareness of 

resource heterogeneity. It doesn't fully account for the varying efficiencies of different GPUs, even 

when they are of the same model. Task-GPU affinity, which refers to the alignment between the 

computational requirements of a task and the specific characteristics of a GPU model, plays a crucial 

role in optimizing system performance. Consequently, a critical avenue for future research lies in the 

development of methodologies that more effectively incorporate task-GPU affinity during the 

resource allocation process. This would ensure that tasks are mapped to the most suitable GPUs, 

thereby enhancing both computational efficiency and overall system performance. 

4. Conclusion 

Three challenges exist for fairness optimization in GPU resource scheduling, namely multi-tenancy, 

resource heterogeneity, and dynamism. Themis builds on ideas of fine-grained task completion-time 

fairness to add more dynamism at the cost of not allowing multi-tenancy or heterogeneity of 
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resources. Long GPU-time Fairness provides long-term fairness both on job level and tenant level to 

ensure fairness in multi-tenant environments while it fails to take resource heterogeneity and 

dynamism into consideration. Shockwave relaxes this dynamic through a dynamic market mechanism 

at the expense of computational overhead. Gavel leverages linear programming to optimize 

heterogeneous GPU resource allocation, gaining higher dynamism and precision than previous 

approaches, but incurs additional overhead from real-time data collection and may suffer 

performance loss when task resource demands vary significantly. Sia performs better than linear 

programming because it prioritizes tasks; however, Sia has the disadvantage of starvation of lower-

priority tasks. While DRF extends the idea of dominant resources to ensure fairness in settings with 

heterogeneous resources, in static scheduling strategies it can lead to inefficiencies when there are 

large resource demands differences. Though the Lottery mechanism relieved fairness problems in 

heterogeneous resource allocation, the randomness of this mechanism can decrease the execution 

efficiency of tasks. 

Development of intelligent models such as dynamic task scheduler and better task placement can 

significantly curb the Job Completion Time (JCT) and enhance the efficiency of task execution. 

From rule-based heuristic functions to online learn, reinforcement learning and hybrid of above two 

kinds methods, most of the methods focus on finding a more intelligent and dynamic solutions for 

the task and the corresponding solutions. These systems are designed to be more responsive to short-

term changes while ensuring long-term effectiveness. But these developments stretch demands for 

real-time data gathering, monitoring, and computational capability. Furthermore, techniques like 

task packing and merging allow for the optimization of task placement strategies, reducing latency 

due to bandwidth restrictions. 

In the future, fairness strategies must focus on strengthening their dynamic abilities to address the 

complex challenges of heterogeneous environments with multiple resources and users. Some tasks 

require allocating resources, while others involve overseeing intricate concurrent workloads. Hybrid 

scheduling approaches, combining linear programming with reinforcement learning, seem to provide 

a promising path toward generating highly effective and adaptable solutions. Such approaches aim to 

accomplish both precision in distributing resources and flexibility when reacting to varying task 

demands, even with limited resources. Furthermore, time efficiency strategies should evolve to 

develop higher intelligence. Automated Machine Learning can play a key role by allowing AI-driven 

scheduling, reducing computational costs, decreasing expenses, and improving system performance. 

Ultimately, upcoming scheduling systems will become more adaptable, capable of adjusting to 

changing conditions, introducing a new level of flexibility and efficiency for intelligent scheduling 

methods. 
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