
 

 

CT Image Reconstruction and Optimisation with 
Unsupervised Deep Learning 

Yanchuan Yin1,a,* 

1Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, China 

a. yanchuanyin@163.com 

*corresponding author 

Abstract: The quality of computed tomography (CT) images is often affected by various 

issues, such as the patient’s movement or hardening of the beam and the fact that high doses 

of radiation cannot be used due to considerations for human health. Traditional CT image 

reconstruction methods and learn-based CT image reconstruction techniques face challenges 

such as missing edge information, ring artifacts and obvious data dependence. We applied 

the unsupervised learning model to the field of medical images, completed the denoising, 

high-resolution, inpainting and restoration tasks of CT images, and optimised the original 

model. The model parameters were adjusted to improve the performance of the model, and 

the adjustment results were evaluated by data analysis and image visualisation1.  
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1. Introduction 

1.1. Background 

The quality of computed tomography (CT) images is often compromised by various factors, including 

damage, oil stains, handwritten notes, patient movement and cardiac rhythm, necessitating repairs. 

Additionally, there is a need to reduce CT scan doses to minimise radiation exposure which impacts 

image clarity. Deep learning has achieved a superior reconstruction quality for solving inverse 

problems [1], however, this type of machine learning requires extensive training data, raising 

concerns about patient exposure to high X-ray doses. Meanwhile, traditional methods like filtered 

back projection (FBP) and iterative reconstruction can lead to edge information loss and central ring 

artifacts [2]. Learning-based techniques, while data-intensive, risk overfitting and performance 

decline without ample labelled CT data. 

1.2. Challenges 

1. Adjusting model parameters and hyperparameters is constrained as excessive tweaking can lead 

to overfitting or high computational costs. The adjustment process lacks a fixed pattern, 

necessitating repeated exploration for optimal settings. 

2. Model optimisation via backpropagation seeks network weights but may require numerous 

iterations to reach the global optimum, with a risk of settling into local minima. 

 
1 https://github.com/YYC-CHUAN/dip-CTuse  
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3. This study employs CT images as the input, which, due to their medical nature, demand high 

information fidelity and accuracy. Prior research seldom uses CT images, resulting in lower repair 

accuracy and challenging parameter tuning. 

1.3. Contributions 

1. This work offers substantial contributions to the field of medical image application. By using 

damaged CT images as the input and using the unsupervised learning model of image 

reconstruction, based on the internal understanding of natural images, the recovered CT images 

can be outputted in four tasks, including denoising, high resolution, inpainting and restoration.  

2. Algorithm optimisation of the original model was carried out. The performance of the model is 

enhanced by adjusting the model parameters. CHAOS Multi-organ Segmentation dataset and 

TCGA-LIHC Liver CT dataset were used for data evaluation. We changed the model parameters 

and hyperparameters and compared the model performance with line charts of the mean squared 

error (MSE) and peak signal-to-noise ratio (PSNR) values. Meanwhile, the subjective quality of 

visual perception was used as the standard for testing. 

2. Related Work 

Deep learning methods used in CT image reconstruction, such as denoising, super-resolution, 

inpainting and enhancement, have shown great promise but also face limitations.  

1. Denoising: denoising techniques [1, 3] like deep image prior may overfit data or require extensive 

high-quality scans, making them costly and dependent on prior models.  

2. Super-resolution: super-resolution methods demand paired high-resolution and low-resolution 

images for training, which limits their real-world applicability and can be affected by noise [4, 5].  

3. Inpainting: inpainting models struggle with data reliance and may produce less natural images due 

to a lack of detailed metal edges [5, 6].  

4. Enhancement: enhancement algorithms, while improving contrast, have limited noise suppression 

capabilities and can exacerbate existing flaws in low-resolution images [7, 8]. Future research 

should focus on developing robust, data-efficient, and noise-resistant methods to improve CT 

image quality. 

3. Method 

The parametric function of the deep generator network is 𝑥 = 𝑓𝜃(𝑧). It maps the coding vector 𝑧 to 

the image 𝑥. By converting the simple distribution 𝑝(𝑧) of 𝑧 to the complex distribution 𝑝(𝑥) of 

image 𝑥, the simple input transformation simulates a more complex and richer image. Often deep 

generator networks need to be trained with vast amounts of real data to adjust the value of 𝜃 to encode 

knowledge within the distribution 𝑝(𝑥)  into 𝜃 . However, in the method used in this paper, the 

information of the image distribution 𝑝(𝑥) is contained in the network structure and no training on 

the parameter 𝜃 in the network is required. 

3.1. Network Overview 

In the method proposed in this paper, the size of the image tensor is 𝑥 ∈ 𝑅3×𝐻×𝑊  (H is the height of 

the tensor, W is the width), the size of the coding vector is fixed as  

𝑍 ∈ 𝑅𝐶 ′×𝐻′×𝑊′
 and the structure of the neural network is parametrisation 𝑥 = 𝑓𝜃(𝑧). The neural 

network iterates to obtain 𝜃 value according to the input image through algorithms such as gradient 

descent. In each iteration, the randomly initialised coding vector 𝑧 outputs the image according to 𝜃. 
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When 𝜃 reaches the local minimum point, the output image is completed. It can be said that the 

network will map to the image 𝑥 based on parameters 𝜃 generated by 𝑥0, comprising weights and 

filter deviations in the network. Figure 1 shows the framework of the network. The network itself has 

a standard structure and alternates filtering operations such as linear convolution, upsampling and 

non-linear activation functions. 

 

Figure 1: Network framework in image restoration. 

3.2. Process 

The images were output by the following steps:  

1. The network weights were randomly initialised 𝜃 to generate an initial image  𝑥 = 𝑓𝜃(𝑧) from a 

fixed random 3D tensor 𝑧. 

2. 𝜃  was updated using gradient descent and other algorithms based on the energy 

function 𝐸(𝑓𝜃(𝑧); 𝑥0), where 𝑥0 is the input image. 

3. 𝜃   was iteratively updated with the energy term 𝐸(𝑓𝜃(𝑧); 𝑥0) using the same random 3D vector 𝑧 

until convergence. 

4. The recovered image 𝑓𝜃 (𝑧)  was output when 𝜃 reached a local optimum, either when 

𝐸(𝑓𝜃(𝑧); 𝑥0)  = 0 or when the optimal stopping point was reached. 

Details are included in the technical report [9]. 

3.3. Network with Resistance to High Noise 

Although almost all images can be adapted to the network, the adaptation degree of low noise images 

and high noise images is different because the network architecture has selective retention of 

information. The neural network will resist the results that do not conform to the ground truth image 

and will decline in the direction of the ground truth, with the decline in efficiency of the natural image 

being higher. 
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Figure 2: Learning curves for the reconstruction task using CT images with different levels of 

Gaussian noise. 

In order to quantify the influence of different image noise intensity on the network reconstruction 

effect, we compared the distance 𝐿2 between the generated image and the input image 𝑥0. 

Figure 2 shows the energy 𝐸(𝑥; 𝑥0) and the iterative process under the selection of four different 

images: (a) a natural image, (b) the same image with Gaussian noise intensity of variance = 0.01, (c) 

the same image with Gaussian noise intensity of variance = 1, (d) the same image with Gaussian noise 

intensity of variance = 10. 

From this image it can be seen that the network optimises the original image and the natural image 

with low noise intensity faster, while it has obvious resistance to strong noise. This reflects the 

characteristics of parameterisation: the retention of signal information is preferred over noise. 

According to this conclusion, for the actual image reconstruction problem, we limited the number of 

iterations to ensure that the model learning was focused on the signal information to reduce the 

sensitivity to noise and used the network internal regularisation to avoid noise overfitting. 

3.4. Details in Applications 

1. Denoising: Under the assumption of blind denoising, we used the same energy term as above. 

Given a CT image degraded due to complex and unknown compression artifacts, the restored clean 

image was output after substituting the minimised 𝜃. 

2. Super resolution: Super resolution is a problem of obtaining a higher resolution image from the 

reverse of the resolution image. We replaced the energy term with 𝐸(𝑥; 𝑥0) =  ∥ 𝑑(𝑥) − 𝑥0
2 ∥, 

where 𝑑(⋅)  is a subsampler calculated by minimising the distance between the desired high-

resolution image and the original image and using the subsampler in reverse. Regularisation was 

used at the same time to pick out the output image that best matches the expectation.  

3. Inpainting: We replaced the energy term with 𝐸(𝑥; 𝑥0) =  ∥ (𝑥 − 𝑥0) ⊙ 𝑚 ∥2  to measure the 

difference between the current image 𝑥 and the missing part of the original image 𝑥0. This was 

also used to transform the optimisation problem into the solution of the latent variable 𝑧, using 𝑧 

to indirectly affect the value of 𝑥 to introduce the prior knowledge constraint solution.  

4. Restoration: Restoration considers image restoration drawn according to a mask randomly 

sampled from a binary Bernoulli distribution. We sampled a mask and randomly dropped the pixels 

by 50%. In this case, the missing part of the image was repaired. 

4. Experiment 

In this experiment, we used a GPU (memory size of 15.0 GB), with system RAM of 12.7 GB and a 

disk size of 112.6 GB. The medical image data that was used came from two datasets of AI Studio 

website: CHAOS Multi-organ Segmentation dataset [10] and TCGA-LIHC Liver CT [11]. The 

CHAOS dataset includes 40 liver/spleen/kidney CT scans with segmentation labels, while the TCGA-

LIHC Liver CT dataset comprises clinical images. 
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We applied the medical image data to the unsupervised deep learning model and optimised the 

algorithm, adjusted the learning rate, no.scales and other parameters to improve the model 

performance. Then, we obtained the optimal optimisation result by comparing the final PSNR value 

of different experimental parameters and the visual perception analysis of the output image. 

A total of four image reconstruction tasks were completed. Following this, we summarised the 

results on a PSNR line chart and output result comparison chart. However, due to space limitations, 

we put two tasks in the technical report [9] and only described two tasks in the main body. 

4.1. Denoising 

  

(a)                (b)           (c)            (d)     

Figure 3: (a) Performance of denoising comparing different learning rates, (b) the original image, (c) 

output image when learning rate = 0.001, (d) output image when no.scale = 3. 

In denoising application, we adjusted the values of learning rate {0.0001, 0.001, 0.01, 0.1} and 

no.scales {3, 4, 5, 6, 7} for the CHAOS dataset by means of control variables and evaluated the 

quality of output images with PSNR values. 

In the process of adjusting the learning rate, we found that the learning rate of the original model 

was 0.01. Moreover, the output image displayed the best quality, even better than the original image, 

when it was exponentially reduced to 0.001, while the output image quality was not as good as the 

original when it was reduced to 0.001 or increased to 0.1. 

In the process of adjusting the values of no.scales, we found the result was similar to that of 

adjusting the learning rate, where the output image quality would be the best when the no.scales was 

reduced to 3. 

4.2. Inpainting 

 

Figure 4: (a) Performance of inpainting comprising of different learning rates, (b) the original image; 

(c) the corrupted image, (d) output image when learning rate = 0.001, (e) output image when 

no.channels = 4. 
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In the inpainting application, we adjusted the values of the learning rate {0.0001, 0.001, 0.01, 0.1} 

and no.channels {3, 4, 5, 6, 7} for the TCGA-LIHC Liver CT dataset using the same method as 

denoising. 

We found that the results of the adjustment were similar to the previous application, where the 

model works best when the learning rate was exponentially expanded to 0.1 from 0.01, which is the 

original value. 

In the process of adjusting no.channels in inpainting application, we found that the original model 

no.channels was 5 and the output image displayed the best quality when it was reduced to 4, followed 

by the effect when it was expanded to 6 and 7, both of which were better than the original output 

results. However, the output image was poor when it was reduced to 3. 

5. Conclusion 

In this paper, we applied CT images to an unsupervised deep learning image reconstruction model 

and optimised the reconstruction results by changing the model parameters and hyperparameters. In 

future work, we will continue to optimise the restoration part and enhance the application range of 

CT image restoration. 
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