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Abstract. For Motor Imagery (MI) signals based on Brain-Computer Interface (BCI), user 

intentions are transformed into signals with specific frequencies that reflect motor identities. 

However, it is difficult to classify MI-EEG signals due to their non-stationarity and low signal-

to-noise ratio. In this study, we proposed a signal preprocessing method based on the Short-Time 

Fourier Transform (STFT), which has high time and frequency resolution to extract detailed 

information from the signals. Furthermore, we constructed a hybrid model that combines our 

custom-designed Double-Dimensional Multi-Scale Convolutional Neural Network 

(DDMSCNN) with an Attention Network. Our model captures deeper spatial-temporal features 

and effectively manages locally significant information in MI-EEG signals. The dataset BCI 

Competition IV 2a is used in the experiments. The mean accuracy of user-independent 

classification reaches 64.04%, while user-dependent classification accuracy achieves 70.50%, 

which demonstrates the advantages of our hybrid DDMSCNN-Attention model. In summary, 

this method for MI-EEG classification has reached high accuracy while maintaining low 

computation time. An in-depth exploration of our model architecture may provide a fresh 

approach for refining the classification of MI-EEG signals, thereby advancing the field of brain-

computer interactions. 

Keywords: BCI, convolutional neural network, attention network, hybrid neural network, motor 

imagery classification, short-time Fourier Transform, EEG, machine learning. 

1.  Introduction 

Motor imagery EEG (MI-EEG) is a key area in the field of Brain-Computer Interface. MI signals are 

recorded when subjects imagine motioning without any physical action. The ipsilateral and contralateral 

motor perception cortexes exhibit event-related synchronization (ERS) and desynchronization (ERD) 

during such imagery, providing a physiological basis for EEG classification [1].  
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Over the past decade, the two most popular classifiers for EEG recognition have been Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA) [2]. However, traditional studies faced 

challenges due to the low signal-to-noise ratio (SNR) of signals, resulted in low classification rates [3]. 

In the extant literature, research applies continuous wavelet transform (CWT) to convert original 

EEG data into time-frequency images to extract signal information. However, CWT does not perform 

well for MI signals due to their low frequencies. Compared with CWT, the short-time Fourier Transform 

(STFT) provides clear spectral identities in 8-30 Hz, and has low computational complexity, which 

outperforms CWT while transforming low-frequency MI-EEG signals into images with time-frequency 

identities. 

Scientific deep-learning approaches such as Convolutional neural networks (CNN) have significantly 

increased the performance of image comprehension and classification [4]. CNN transcends the 

limitations of traditional machine learning networks, which rely on manually designed parameters to 

extract features. Besides, CNN enhances the ability to capture spatial features in images, thereby 

significantly improving the recognition and classification capabilities of EEG signals, especially for 

motor imagery signals [5]. Recent studies have proposed various CNN feature fusion architectures that 

integrate time-frequency information. For instance, dual-stream CNN (DCNN) models proposed by 

Huang et al.[6], apply both time and frequency-domain signals as inputs, using linear weighting for 

fusion to achieve end-to-end learning. This fusion of time-frequency features and CNN-based deep 

learning techniques opens a new feature fusion mechanism, offering improved recognition and control 

capabilities for MI-EEG applications. 

However, DCNN does not explore temporal connections among features. Instead, it investigates 

features in different time periods separately, which is insufficient for discriminative feature extraction. 

We discovered that to increase the MI-EEG decoding efficiency, temporal relationships among MI-

related patterns at different stages during MI tasks are crucial. As such, our goal is to create connections 

between features that were taken from various time periods. In recent years, generative models for image 

recognition have made extensive use of attention mechanisms. By assigning each context element an 

attention weight that defines a weighted sum across context representations, it is able to learn 

dependencies among them in an efficient manner. Inspired by the attention-based lightweight 

convolution [7], meanwhile considering the scarcity of EEG training data, a unique double-dimensional 

multi-scale CNN (DDMSCNN) with attention mechanism is proposed for MI-EEG classification in this 

paper. 

We report methodology in Section 2, experimental findings in Section 3, discussions in Section 4, 

and conclusions in Section 5. 

2.  Methodology 

In this section, we illustrate the procedure and details of our proposed network architecture. Fig.1 shows 

the overall structure of our hybrid model, where MSCNN is multi-scale CNN, which means having 

different scales of convolution kernels. 

 

Figure 1. Structure of the proposed model.  
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The raw MI-EEG signals are processed through two branches. The signals in the first branch go 

straight via 1D-MSCNN. In the second branch, the signals are preprocessed using STFT before passing 

through 2D-MSCNN. The CNN outputs are concatenated and fed into the attention network to form the 

4-class classification result. 

2.1.  Data Preprocessing 

The BCI Competition IV dataset 2a is utilized for training and testing the proposed network to evaluate 

and improve performance [8]. The dataset was recorded with a sampling frequency of 250 Hz and 22 

EEG channels. In this competition, nine patients performed four different motor imagery tasks: tongue 

(class 0), feet (class 1), right hand (class 2), and left hand (class 3) movements. Each patient participated 

in two sessions on different days, with measured data used for training (T) and validation (V), which 

resulted in a total of 18 files. Each session included six runs, and each run consisted of 48 trials (12 trials 

for each task). 

During each trial, the patient faced a computer screen at ease. As shown in Fig.2, at the beginning of 

the trial (t=0s), a fixation cross appeared on the screen accompanied by a 70ms auditory cue. At t=2s, a 

prompt lasting about 1.25s appeared on the screen instructing the patient to perform motor imagery of 

the left hand, right hand, feet, or tongue. The EEG equipment captured the brain activity corresponding 

to the motor imagery and transmitted it to a computer. The patient continued the motor imagery until 

the fixation cross disappeared at t=6s. The screen then turned black, offering a rest period before the 

next trial. 

The dataset includes labels, patient information, events, event markers, and recording times. We 

selected the dataset saved in .csv format and extracted signals from t=1.900s to t=2.700s, yielding a 

0.800-second segment containing 200 samples. Thus, we obtained a data matrix set: 

𝐷 = {[𝑋1 𝑌1] , [𝑋2 𝑌2] , . . . , [𝑋22 𝑌22]} 

where Xi ∈ R200×2248, Yi ∈ R1×2248, 200 is the sample number of each trial, 2248 is the number of 

trials, and 22 is the number of channels. The input matrix of the i
th

 channel Xi contains 2248 trials, 

and each trial has 200 data samples. The matching label Yi = (y
1
 y

2
 . . . y

2248
)

T
, where y

j
∈

{tongue: 0, foot: 1, right hand: 2, left hand: 3}. 

 

Figure 2. Timing scheme of each trial [8].  

The cue appears on the screen at t=2s and last for 1.25s, instructing the patient to perform motor 

imagery of the left hand, right hand, feet, or tongue. The patient continued the motor imagery until the 

fixation cross disappeared at t=6s. 

2.2.  STFT 

MI-EEG signals are inherently non-stationary, meaning their statistical properties change over time. A 

popular method to extract and demonstrate the frequency features of MI-EEG signals is the short-time 

Fourier Transform (STFT). This STFT algorithm transfers the 1D signal in the time domain to the 2D 

time-frequency domain image. STFT breaks the signal into short-time segments, applies the Fourier 
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Transform to each segment, and observes their frequency characteristics. STFT can be represented by 

the following formula: 

 𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝜏, 𝑓) = ∫ 𝑥(𝑡) ∙ 𝑤(𝑡 − 𝜏) ∙ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 (1) 

where w(t) represents the window function, and x(t) represents the signal to transform. Apply proper 

window function, the raw MI-EEG signals can transform into 2D time-frequency images. 

In our model, the input of the MI-EEG signal is a (200, 22) 2-D array. STFT will only operate the 

parameter in the time domain, which is “200”. For user-independent classification, applying window 

length 50 and hop size 25, we get the preprocessing result by STFT, which is a (26, 9, 22) 3-D array, 

providing a rich representation of the time-varying spectral content of the MI-EEG signals, making it 

suitable for subsequent analysis and model training. Fig.3 demonstrates the results of STFT 

transformation. 

 

Figure 3. STFT images for the “foot” signal of each channel.  

 

Colors from dark blue to red indicate the rise in the intensity of the specified frequency component 

in the time gap. 

2.3.  Double-Dimensional Multi-Scale CNN (DDMSCNN) Model 

We constructed our CNN-based model, DDMSCNN, as shown in Fig.4. DDMSCNN contains a double-

dimensional 1-D and 2-D CNN, each has three convolution layers. For user-independent classification, 

1-D CNN contains convolution kernel sizes of 1 to 3, and 2-D CNN contains convolution kernel sizes 

of (1,1) to (3,3). Learning rate is set at 0.0010 and stride L=1. The following step is activation by the 

Exponential Linear Unit (ELU): 

 𝐸𝐿𝑈(𝑥) = {
𝛼(𝑒𝑥 − 1), 𝑥 < 0

𝑥        , 𝑥 ≥ 0
 (2) 

It outputs a minimum negative value for negative inputs, allowing the model to continue convoluting 

for critical negative input conditions. Both 1-D and 2-D CNN models applied Max pooling with a kernel 

scale of 2, highlighting the distinctive features and reducing the data sizes. The Dropout layer then 

eliminates overfitting at a dropout rate of 0.6, forcing the network to absorb robust features. Instead of 

applying a full-connection layer, we reshaped the output of 2-D CNN to match the dimensions of the 1-

D CNN output to best preserve data features. The outputs are then concatenated linearly to form a 

67×128 matrix as the output of DDMSCNN. 
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Figure 4. 1-D and 2-D CNN structures of DDMSCNN for user-independent classification.  

The input is processed through convolution, ELU activation, max pooling and dropout. Three 

iterations of the procedure are carried out, incorporating modifications to the convolution filters and 

kernels. 

2.4.  Attention Module 

The proposed attention network is designed to process the output matrix, which has a size of 67×128, 

from our DDMSCNN model. The structure of the attention network is shown in Fig.5. This network 

generates a weighted representation of the input feature maps within its first dense layer. This initial 

dense layer utilizes the "tanh" activation function for transforming the dense input and contains the same 

number of units as the two-dimensional input shape. 

Subsequently, another dense layer, which has the activation function “softmax”, is employed to 

compute the attention weights. “Softmax” ensures the output forms a probability distribution across the 

feature maps. These weights are then reshaped into a vector with a size of 67×1. 

Following this, the feature space from the input layer is element-wise multiplied by the reshaped 

attention weights, resulting in an output matrix of 67x128. This matrix is then flattened into a one-

dimensional array of size 8576×1. Finally, this array is input into a final dense layer with a "softmax" 

activation function, producing the ultimate output of the network. 

 

Figure 5. Structure of the attention module.  

The initial dense layer utilizes the "tanh" activation function for transforming the dense input. The 

second dense layer with the activation function “softmax” is employed to compute the attention weights 

with a 67×1 vector. The input layer is element-wise multiplied by the reshaped attention weights, then 

flattened and inputted into a final dense layer with the "softmax" activation, producing the prediction of 

the classification task. 
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3.  Results 

3.1.  Performance of the Proposed Network 

The results of our study are summarized in Table 1, Fig.6 and Fig.7. As shown in Fig.6, despite the 

slight overfitting indicated by the disparity between training and testing accuracy, our hybrid model 

demonstrates stability. The validation loss remains low, and the model achieves average high accuracy, 

showing the feasibility and advancement of our approach. 

Table 1. Performance of the proposed network. 

Type 
User-Independent  User-Dependent 

Accuracy Loss  Avg. Accuracy Avg. Loss 

Training 87.91% 0.7014  96.97% 0.9807 

Validation 64.04% 1.3142  70.50% 1.5559 

 

 

Figure 6. The accuracy and loss curve of the proposed network.  

The user-independent accuracy has stabilized at 64%. The user-dependent result, derived from 

patient 7, has reached a peak of 79%. 

  

Figure 7. Confusion matrix of the proposed model.  

The sum of each row in the matrix indicates the total number of epochs used for the actual test set of 

a specific category, while the sum of each column shows the total epochs classified for that category 

through the output layer. The unequal totals arise due to a break function in the network, which halts 

learning upon loss function convergence to save computational resources. Consequently, the capacity 

of the test sets varies. 
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3.2.  Base-line Methods Performance Comparison 

To evaluate the performance of our model, we make comparisons with related methods and classical 

deep-learning models. Table 2 provides the hyperparameter settings for user-dependent classification, 

while Table 3 presents the classification accuracy of baseline methods and our proposed approach. The 

hyperparameters for the 1D-CNN are specified as filters and kernels 1 to 3, whereas those for the 2D-

CNN are indicated as filters and kernels 4 to 6. Filters 3 and 6 share the same parameters due to the 

concatenation of the CNN outputs. Consequently, filter 6 is not listed in Table 2. 

Table 2. Hyperparameter settings of user-dependent classification. 

Patient 1 2 3 4 5 6 7 8 9 

Filter 1 21 62 40 55 63 47 32 36 54 

Filter 2 83 102 85 78 56 46 56 40 87 

Filter 3 132 91 74 82 256 247 147 100 90 

Filter 4 56 25 48 30 63 33 45 41 26 

Filter 5 33 111 79 91 49 50 109 90 110 

Kernel 1 2 1 2 2 2 2 2 2 1 

Kernel 2 2 3 2 2 2 3 3 2 2 

Kernel 3 2 2 2 3 3 2 3 3 3 

Kernel 4 (1, 2) (1, 2) (2, 2) (2, 1) (1, 2) (2, 2) (2, 1) (1, 2) (2, 2) 

Kernel 5 (2, 3) (3, 3) (3, 2) (3, 2) (2, 2) (2, 2) (3, 2) (3, 2) (3, 2) 

Kernel 6 (3, 3) (3, 3) (2, 3) (3, 3) (3, 3) (2, 3) (3, 2) (2, 3) (2, 2) 

Dropout 0.70 0.33 0.44 0.52 0.42 0.45 0.54 0.69 0.50 

Accurac

y 

68.96

% 

58.62

% 

65.52

% 

89.66

% 

79.31

% 

63.79

% 

77.59

% 

56.90

% 

74.14

% 

Table 3. Classification accuracy of baseline methods and our method (%). 

Patient 1 2 3 4 5 6 7 8 9 
Mean 

accuracy 

BO-GP[9] 79.65 47.33 73.3 61.25 35.56 55.45 77.64 80.52 81.15 65.76 

BO-RF[9] 82.12 44.86 86.6 66.28 48.72 53.3 72.64 82.33 76.35 68.13 

MLP[10] 75.69 48.96 75.35 64.93 52.08 39.93 82.99 84.72 67.36 65.78 

SVM[10] 79.16 52.08 83.33 62.15 54.51 39.24 83.33 82.64 66.67 67.01 

Our method 68.96 58.62 65.52 89.66 79.31 63.79 77.59 56.90 74.14 70.50 

 

Our method has achieved high accuracy in user-dependent tests, outperforming all baseline methods. 

However, we observed variability in the user-dependent accuracies of our model. Specifically, apart 

from patient 4, whose data comprises only two classes, the highest classification accuracy was achieved 

with patient 5 at approximately 80%. Conversely, the lowest classification accuracy was recorded with 

patient 8, at only about 60%. These results indicate that our model is not fully effective in recognizing 

all patient data. Therefore, enhancing the adaptability of our model is crucial for future improvements. 

4.  Discussion 

Without dividing the input data by time periods, our model successfully managed the 4-class 

classification, indicating the accomplishment of our requirement. Despite these improvements, 

optimization is still necessary due to the classification accuracy, memory consumption, and 

computational demand. We recognize that to reduce computational loads, model compression 

techniques like weight reduction and quantization are essential. While our model has demonstrated its 

classification abilities of MI-EEG, efficiency without sacrificing accuracy is still a goal. Future work 

will focus on refining the attention mechanism, exploring model compression, and incorporating 
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advanced technologies to better capture the complex dynamics of MI-EEG signals. Our aim is to modify 

our model that ultimately reaches the performance of high accuracy and efficiency, thereby making 

practical application in real-world scenarios. Essentially, our findings highlight the potential of deep 

learning for MI-EEG classification, but also acknowledging the necessity for network optimization and 

the integration of advanced techniques to fully use the properties of MI-EEG signals. 

5.  Conclusion 

In this study, we assessed the performance of our proposed hybrid model for MI-EEG signal 

classification, which integrates short-time Fourier Transform (STFT), Double-Dimensional Multi-Scale 

CNN (DDMSCNN), and an attention mechanism. Our method effectively overcomes the drawbacks of 

traditional CNNs in identifying MI-EEG features by incorporating multi-scale convolutions and the 

attention network that enhances the representational ability of the model. The addition of STFT 

transforms MI-EEG signals into 2-D time-frequency images, further improving recognition accuracy. 

The experimental results show that our model achieves better performance than the baseline methods. 

The user-independent model achieved an accuracy of 64.04%, and the user-dependent model achieved 

an accuracy of 70.50%. The steadily high classification accuracy demonstrates the improvement in 

managing MI-EEG signals. Despite the promising outcomes, there are still challenges to be solved. The 

overfitting issue shows the necessity of model structure and hyperparameters modification, and the 

variability of user-dependent test results indicates user applicability enhancement. Future work will 

focus on minimizing overfitting, reducing computation load, and exploring additional techniques to 

enhance the model performance. In summary, our study offers a novel and effective network for MI-

EEG signal classification, utilizing STFT, DDMSCNN, and attention mechanism. This research 

advances the field of EEG-based BCI, offering potential applications in neurorehabilitation and assistive 

technologies. 
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