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Abstract: This paper proposes a DBSCAN anomaly data identification method driven by data 

distribution to address the limitations of the traditional DBSCAN algorithm in parameter 

selection and anomaly detection. The conventional DBSCAN algorithm relies on manually 

set parameters, such as the neighborhood radius Eps and the minimum number of samples 

MinPts, which often result in inaccurate clustering outcomes. By incorporating the 

characteristics of data distribution, this study adopts the 3σ rule to adaptively determine Eps 

and MinPts, thereby achieving a fully automated clustering process. Experimental results 

demonstrate that this method effectively identifies anomalies embedded within normal data 

in datasets with non-spherical clusters, achieving higher accuracy than the traditional 

DBSCAN algorithm. 
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1. Introduction 

The Density-Based Spatial Clustering of Applications with Noise [1] (DBSCAN) algorithm is a 

density-based clustering method that identifies clusters of arbitrary shapes by calculating mutual 

distances between data points without requiring any prior knowledge. DBSCAN constructs regions 

of high density and low density, making it particularly useful for anomaly detection. The algorithm 

clusters data based on two key parameters: the neighborhood radius Eps and the minimum number of 

points MinPts. The appropriate selection of these parameters is crucial for accurate clustering results. 

Current research on improving DBSCAN mainly focuses on tuning the parameters Eps and MinPts.  

Xia et al. [2] proposed an adaptive parameter determination method that calculates the statistical 

properties of the data. This method employs the inverse Gaussian distribution to identify the radius 

Eps corresponding to the peak point, and uses the inflection point of the noise curve to determine the 

minimum score MinPts within the radius, achieving adaptive parameter tuning. However, this 

approach performs poorly with high-dimensional data, has high computational complexity, and is 

time-consuming. Lei et al. [3] utilized sample silhouette coefficients and cluster silhouette 

coefficients to compare multiple sets of parameters and select the most effective parameters for 

clustering. The sample silhouette coefficient is calculated as follows: 𝑠𝑖 =
𝜕𝑖−𝑎𝑖

∗𝑚𝑎𝑥(𝑎𝑖,𝑏𝑖)
, 𝑠𝑖∈[−1,1]. 

Based on this, it can be determined whether a given sample fits its assigned cluster. The closer the 
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value is to 1, the more appropriate the clustering. The cluster silhouette coefficient is defined as: 𝑠𝑘 ≡
1

𝑛
∑ 𝑠𝑖

𝑛
𝑖=1 . The silhouette coefficient for the entire dataset is the average of all sample silhouette 

coefficients. However, this approach still does not go beyond the scope of parameter tuning and fails 

to incorporate the unique data distribution characteristics inherent to power curves. 

Li et al. [4] used DBSCAN as the base model and designed two evaluation metrics, prediction 

error and classification accuracy, to achieve fully automated selection of two clustering parameters: 

the neighborhood radius and the minimum number of samples in a neighborhood. However, the 

prediction error requires normal data to create both the training and testing datasets, while 

classification accuracy requires both normal and abnormal data for training, which is logically 

contradictory. 

YaoQ et al. [5] introduced a mechanistic model, specifically the wind turbine power characteristic 

curve. Using the formula 𝑃𝑚 = 0.5𝜋𝜌𝑅2𝐶𝑝(𝜆, 𝛽)𝜈3, they calculated the minimum distance between 

the operational data and the theoretical model to dynamically adjust Eps and MinPts. Although this 

method incorporates the power characteristic curve, it does not integrate it holistically. Instead, it uses 

the characteristic formula solely to determine the relative distance from the characteristic curve, 

thereby setting the two parameters. 

Hu [6] proposed a multi-density adaptive parameter determination algorithm. This approach 

generates candidate lists of Eps and MinPts parameters based on the distribution characteristics of a 

denoised and attenuated dataset. It selects corresponding Eps and MinPts values from the interval 

where the number of clusters stabilizes, using denoising levels as a reference. A distance distribution 

matrix is generated and sorted, with a decay term added during Eps determination: 𝐸𝑝𝑠𝑘 = (1 −
𝜆2)𝐷𝑘

̅̅̅̅ , 𝐸𝑝𝑠−𝑙𝑖𝑠𝑡 = {𝐸𝑝𝑠𝐾|1 ⩽ 𝐾 ⩽ 𝑛} . However, for large-scale datasets, its time and space 

complexity can become prohibitive. 

Zheng et al. [7] proposed a QM-DBSCAN-based data cleaning method. First, they applied the 

quartile method to clean wind speed-power data laterally. Next, they divided the cleaned data into 

wind speed intervals of 0.5 m/s, applying the DBSCAN method to determine the Eps and MinPts 

values for each interval and perform clustering. Compared with the traditional quartile and DBSCAN 

methods, their approach improved the correlation coefficient of the clustered data and achieved better 

cleaning results. However, it did not account for the mechanistic model of wind turbines. 

In summary, although current improvements partially address the parameter selection problem of 

the DBSCAN model, manual intervention is still required to set certain parameter values. Furthermore, 

the distribution characteristics of wind turbines’ power-speed curves have not been integrated into 

existing anomaly detection methods. 

Based on this, this study proposes a new method founded on the traditional DBSCAN algorithm. 

By introducing the distribution characteristics of the data to determine the clustering propagation 

direction and applying the 3σ criterion to adaptively determine Eps and MinPts, this method achieves 

full automation of the clustering process. The proposed method’s effectiveness is validated using 

operational data from actual production processes. 

2. A DBSCAN-Based Anomaly Data Processing Method Driven by Data Distribution 

The basic idea of this algorithm is to analyze the distribution characteristics of the data and 

incorporate these characteristics to redefine the clustering propagation direction. Unlike traditional 

density-based clustering algorithms, which expand clusters in spherical directions, this method 

adjusts the clustering propagation direction to align with the variations in data distribution. Using the 

3σ criterion, parameters Eps and MinPts are determined for each data point, yielding the clustering 

results. The DBSCAN algorithm is then applied to label data points with insufficient density as 

anomalies, resulting in the final anomaly detection outcomes. 
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2.1. The DBSCAN Algorithm 

The DBSCAN algorithm begins by selecting a data point as the starting point and calculating the 

density of all points within its neighborhood. If the density equals or exceeds a predefined threshold, 

the point is identified as a core point [8]; otherwise, it is classified as a noise point. For each core 

point, a neighborhood radius Eps is used to calculate the density of all points in its neighborhood. If 

the density meets or exceeds the threshold, these points are grouped into a cluster. For each border 

point, if it lies within the neighborhood of a core point, it is assigned to the cluster of that core point; 

otherwise, it is considered a noise point. Ultimately, all data points assigned to clusters constitute the 

clustering results, while noise points are identified separately as noise outcomes. 

 

Figure 1: Schematic Diagram of the DBSCAN Algorithm 

Definition: Eps Neighborhood 

For any given data object 𝑝, its Eps neighborhood is defined as a multidimensional hypersphere 

space 𝐷, centered on 𝑝 with a radius of Eps, where any object satisfies: 

𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷 ∣ 𝐷𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠} 

Here, 𝐷  represents the dataset in a multidimensional real space, and 𝐷𝑖𝑠𝑡(𝑝, 𝑞)  denotes  the 

distance between data objects 𝑞 and 𝑝 in 𝐷. 

Although DBSCAN inherently does not require pre-specifying the number of clusters and supports 

clustering of arbitrary shapes, its application has some limitations: 

(1) Difficulty in Selecting Density Threshold and Neighborhood Radius: Proper selection of the 

density threshold and neighborhood radius requires adjustment based on the dataset’s characteristics. 

Inappropriate values may result in clusters with incorrect numbers or sizes.  

(2) Poor Handling of Unevenly Distributed Data: DBSCAN struggles with datasets where density 

is uneven. Dense clusters may be split into multiple clusters, while sparse clusters may be 

misclassified as noise points. 

2.2. DBSCAN Algorithm Driven by Data Distribution 

2.2.1. The 3σ Criterion 

The 3σ criterion, also known as the Lyida Criterion, is a data processing method used to identify and 

exclude outliers. Based on the assumption of a normal distribution, it calculates the standard deviation 

to establish an interval, treating errors beyond this range as anomalies and excluding them. 

(1) Define the sample dataset 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖, 𝑖 = 1,2,3 … 𝑛 

(2) Compute the mean: 𝑚 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   

(3) Calculate the standard deviation: 𝜎 = √
1

𝑛
∑ (𝑥𝑖 − 𝑚)2𝑛

𝑖=1
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(4) Establish the confidence interval using the formula (𝑚 − 3𝜎, 𝑚 + 3𝜎), and exclude data 

points in 𝑋 outside this range to obtain standardized data. 

2.2.2. DBSCAN Clustering Algorithm Based on Data Distribution Features 

The core idea of this algorithm is to introduce a mechanistic model to determine the specific shape of 

the data distribution [9]. Unlike traditional density-based clustering algorithms that expand clusters 

in spherical directions, this approach aligns the clustering propagation direction with the data’s 

variation direction. Using the 3σ criterion, it determines the parameters Eps and MinPts for each data 

point, ultimately obtaining the clustering results. 

Assumptions: 

Let the dataset 𝑋 = (𝑥1, 𝑥2, , , … , 𝑥𝑘) represent k-dimensional vectors acquired by the SCADA 

system. 

Propagation Direction: 

The clustering propagation direction is determined along the specific distribution of the 

mechanistic model. Assuming the data at time t is 𝑥𝑡, the propagation direction is expressed as: 

 𝐷𝑖𝑟𝐵 =
𝜕𝑃

𝜕𝑥𝑡 = (
𝜕𝑃

𝜕1𝑡
𝑥 ,

𝜕𝑃

𝜕2𝑡
𝑥 , , , … ,

𝜕𝑃

𝜕𝑘𝑡
𝑥) (1) 

By comparing the cosine similarity between the gradient changes of data within the neighborhood 

radius Eps and the propagation direction, a threshold Threshold is set. Points with a similarity score 

exceeding the threshold are assigned scores. Points with scores greater than Minpts are identified as 

core points. Starting from any core point, all density-reachable objects from this point form a cluster. 

2.3. DBSCAN Anomaly Detection Method Driven by Data Distribution 

The traditional DBSCAN algorithm involves two key custom parameters that significantly impact the 

classification results. The algorithm proposed in this paper emphasizes the necessity of incorporating 

data distribution characteristics, utilizing gradient variations in the data, and applying the statistical 

3σ criterion to determine the values of Eps and MinPts [10]. Based on the theoretical model 

introduced in the previous section, the DBSCAN anomaly detection algorithm driven by data 

distribution (DD-DBSCAN) is described as follows: 

Computational Steps: 

a. Calculate the parameters Eps and MinPts. Randomly select any data point 𝑥𝑖, set the step size 

for data partitioning, and choose the data within the corresponding interval. 

b. Using the normal distribution characteristics of the data, compute the mean (𝑚𝑒𝑎𝑛𝑖 ) and 

standard deviation (𝑠𝑡𝑑𝑣𝑖) for the regional data. Based on the 3σ criterion, determine the confidence 

interval and filter out anomalous data. 

c. Set the standard deviation σ of the corresponding interval as Eps, and define MinPts as the 

number of data points in the interval whose direction of change aligns with the clustering propagation 

direction, with an angle smaller than Threshold. The Threshold can be manually specified. 

d. For each point, calculate the number of data points within the corresponding Eps neighborhood 

that conform to the specific direction, and compare this number with MinPts. If the number exceeds 

MinPts, classify the point as a normal point; otherwise, treat it as an anomalous point. 
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Figure 2: Schematic Diagram of Anomaly Detection Using the DD-DBSCAN Algorithm 

3. Case Study 

To better demonstrate the algorithm proposed in this paper, two test datasets, each containing 1000 

two-dimensional data points, were used. As shown in Figure 3, the distribution of these 1000 two-

dimensional data points can be observed. Unlike traditional test datasets where there is a large 

distance and separation between clusters, this test dataset contains mixed data distributions. In this 

case, a comparative experiment with the traditional DBSCAN algorithm was conducted [11], 

measuring the results from three dimensions: anomaly detection, running time, and recognition 

accuracy. The experimental environment used the Anaconda platform, with Python 3.12.1 as the 

programming language, and the hardware conditions were 256 GB SSD + 16 GB RAM + M4. 

In this test, the dataset contains some noise points mixed in with the normal data. The traditional 

DBSCAN algorithm, which is based on density, can only utilize the density within the neighborhood 

radius and cannot distinguish the distribution of normal data. As seen in Figure 4, the method 

proposed in this paper can identify high-density regions within the dataset and make appropriate 

cluster divisions as desired, thereby detecting the noise points in the data. 

 

Figure 3: DS1 and DS2 Data Distribution 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/108/2025.20861 

160 



 

 

 

Figure 4: DD-DBSCAN Clustering Results for DS1 and DS2 

The DBSCAN algorithm uses the R* tree extension algorithm for searching, with a time 

complexity 𝑂( 𝑛𝑙𝑜𝑔 𝑛). The time complexity of the R* tree extension algorithm mainly comes from 

calculating distances between objects and k-nearest neighbors. In DBSCAN, the distance matrix 

already includes these calculations, so they do not need to be recalculated during the clustering 

process. However, compared to DBSCAN, SA-DBSCAN incurs two additional time costs: 

The 3σ criterion is applied to each data point to compute the values of Eps and MinPts. 

For each neighborhood radius, the number of data points within that interval whose direction of 

change has an angle smaller than the Threshold with the clustering propagation direction must be 

calculated. 

We use the supervised F Measure method [12] to detect the clustering accuracy. The clustering 

results and accuracy metrics for the DS1 and DS2 datasets are shown in Table 1. For comparison, 

traditional DBSCAN clustering was also performed on the datasets. The DBSCAN parameters were 

selected using the K-dist graph to determine the optimal values, but due to space limitations, the 

clustering results for traditional DBSCAN are not shown. 

Table 1: Comparison of Algorithm Computation Time and Clustering Accuracy 

Item Time Accuracy parameter 

DBSCAN 2.669s 80.1% 
eps=0.5, 

min_samples=30 

DD-DBSCAN 4.008s 85.9% Threshold = 0.98 

 

As shown in Table 1, in terms of time performance, SA-DBSCAN is indeed slower than DBSCAN 

due to the additional computation. However, there is no significant difference in the order of 

magnitude between the computation times of SA-DBSCAN and DBSCAN. Furthermore, since the 

clustering process is still the same as DBSCAN, any optimization made to DBSCAN can also 

improve the performance of SA-DBSCAN. Additionally, in terms of accuracy, the algorithm 

demonstrates better performance when handling datasets with non-spherical clusters (DS1, DS2). It 

can effectively handle datasets of any shape and identify anomalous data mixed within them. 

4. Conclusion 

The DBSCAN anomaly detection method driven by data distribution, proposed in this paper, 

successfully adapts the parameters of the DBSCAN algorithm by incorporating data distribution 

features and the 3σ criterion, improving the accuracy and automation of anomaly detection. The 

experimental results show that this method performs excellently when handling complex datasets, 

effectively identifying anomalies mixed with normal data, with significantly higher accuracy 
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compared to the traditional DBSCAN algorithm. Future research can further optimize the time 

complexity of the algorithm and explore its performance in more practical application scenarios. 
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