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Abstract: Ancient character detection serves an important role in paleographic studies and 

archaeological work. Unlike modern characters or text, ancient character renders common 

text detection algorithms inapplicable due to its complex arrangement patterns and highly 

variable backgrounds. Current methods commonly adopt general object detection models, 

which often struggle with the unique challenges of ancient characters. In this paper, we 

propose a lightweight ancient character detection method based on YOLO detector called 

YOLO-ACD. Starting from an efficient YOLO structure, to address the defects and adhesion 

due to coarse scanning or rubbing of the characters, we propose a novel high-frequency 

channel attention (HFCA) module to guide model for precise saliency extraction of strokes. 

To eliminate the interference of noisy backgrounds on the character area, we integrate a 

context-aware spatial attention (CASA) module. Furthermore, in order to overcome the 

limitations posed by limited training samples, we propose the incorporation of spectral 

clustering results as extra confidence scores, with the objective of enhancing the recall rate 

of the predictions. Extensive experiments on two ancient character datasets, including 

Chinese oracle bone script and Egyptian hieroglyphs, demonstrate that our method 

outperforms both mainstream and similar approaches. Compared to baseline model, the mAP 

is improved by 9.8-12.5%. The code of the proposed method will be available at GitHub. 

Keywords: Ancient character detection, object detection, high-frequency channel attention, 

context-aware spatial attention, spectral clustering. 

1. Introduction  

As artificial intelligence (AI) drives revolutionary transformations across industries, it also opens up 

new possibilities for paleographic studies and archaeological research [1]–[3]. In particular, the 

integration of AI into paleography has transformed ancient character detection, enabling the 

preservation of cultural heritage and the interpretation of historical texts with unparalleled efficiency 

and accuracy. As an upstream task for ancient character recognition or interpretation, ancient 

character detection (ACD) plays a crucial role in identifying and localizing characters within complex 

backgrounds. Traditional methods rely on expert manual analysis, a labor-intensive process that is 

not only time-consuming but also prone to human error and subjectivity. In contrast, data-driven 

techniques enable fast detection of characters from eroded or fragmented artifacts like stone tablets 

or bamboo slips. However, these automated object detection algorithms struggle with ancient 
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characters due to their incomplete forms, fragmented strokes, and the scarcity of training samples, 

making feature learning challenging. 

 

Figure 1: Sample images of two ancient characters. Top: Chinese oracle bone scripts. Bottom: 

Egyptian hieroglyphs.It is observable that the character arrangement is random and the forms are 

highly variable. 

Since deep learning-based object detection models have demonstrated remarkable performance in 

various object detection tasks, many researchers have attempted to apply these models to ancient 

character detection [4]–[7]. Due to the passage of time, ancient characters such as Chinese oracle 

bone script and Egyptian hieroglyphs often exhibit incomplete forms, missing strokes, and significant 

erosion, as illustrated in Figure 1. For some extreme cases, even experts find it difficult to quickly 

and accurately locate the characters. Considering that archaeological work is predominantly 

conducted in outdoor environments, the development of an efficient object detector becomes essential 

to accommodate computational resource constrained devices and ensure real-time detection results. 

These obstacles not only highlight the significance of developing robust object detection algorithms 

specifically designed for ancient characters but also present significant challenges in the design of 

such algorithms. 

To address the aforementioned issues, we proposed a robust lightweight object detector for ACD 

task, termed YOLO-ACD. A novel module named High-Frequency Channel Attention (HFCA) has 

been proposed, utilizing high-frequency channels as guidance to enhance the feature representation 

capabilities of the backbone network. This design aims to address the challenges posed by the 

incomplete and adhesion of ancient characters and the difficulty in extracting their saliency features. 

To effectively differentiate interested regions from noisy backgrounds, the Context-Aware Spatial 

Attention (CASA) module was introduced to enhance the model’s attention toward character regions. 

Moreover, to mitigate the issues posed by limited data on deep neural networks, we incorporated a 

spectral clustering-based confidence optimization algorithm, termed SC-Score, into the post-

processing phase. 

Our main contributions are as follows:  

• We propose a novel lightweight object detector, YOLO-ACD, specifically designed for ancient 

character detection.  

• We propose the HFCA module to guide the model in extracting precise saliency features of ancient 

characters, introduce the CASA module to suppress noisy backgrounds and focus the model’s 

attention on character regions, and further develop the SC-Score algorithm to enhance prediction 

recall rates. 
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• Extensive experiments on two ancient character datasets, including Chinese oracle bone script and 

Egyptian hieroglyphs, demonstrate that our method outperforms mainstream and similar 

approaches. 

2. Related work 

2.1. Object detection  

As a fundamental task in computer vision, object detection has been extensively studied in recent 

years. Two-stage detectors, such as Faster R-CNN [4] and Cascade R-CNN [5], have achieved 

remarkable performance in various object detection benchmarks. One-stage detectors, such as YOLO 

[6] and SSD [7], have gained popularity due to their simplicity and efficiency, latest versions of 

YOLO [8]–[10] have achieved state-of-the-art performance in object detection tasks. While these 

detectors demonstrate impressive performance on natural images, they often struggle with ancient 

characters due to their unique characteristics, such as incomplete forms, fragmented strokes, and 

highly variable backgrounds. These challenges necessitate the development of specialized object 

detectors for the ACD task. 

2.2. Character detection  

Character detection serves as an upstream task for various text-related applications, such as optical 

character recognition (OCR) and ancient character recognition. To address the common challenges 

in this task, numerous research efforts have been proposed. Baek et al. [13] proposed a character 

region awareness method based on VGG-16 [14] for detecting characters in natural images. Wang et 

al. [15] proposed an oracle bone script detection method based on YOLOv4 [16] and a novel data 

augmentation strategy. Li et al. [17] proposed a lightweight character detection method based on 

YOLOv7-Tiny [11] for detecting Chinese oracle bone scripts. Zhao et al. [18] used the standard mAP 

evaluation metric for testing mainstream object detection models using the oracle bone script dataset, 

the results indicate that this task remains highly challenging. While numerous character detection 

methods have been proposed, few object detection algorithms have been specifically designed to 

address the unique characteristics of ancient character detection, which underscores the significance 

of our research. 

3. Methodology  

3.1. YOLO-ACD  

Based on a basic lightweight YOLO structure (YOLOv8s [19]), we propose a novel YOLO-ACD 

model to address the few-shot ancient character detection problem. The overall architecture is shown 

in Figure 2. The YOLO-ACD adopts a C2f-Darknet backbone (three-stage) for multi-scale feature 

extraction. To adapt this basic feature extraction pipeline to practical character detection task, we 

propose a set of High-frequency Channel Attention (HFCA) modules at the output of the backbone 

to  
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Figure 2: The overall architecture of the proposed YOLO-ACD. The basic YOLO structure is 

integrated with novel High-frequency Channel Attention (HFCA) modules and decoupled head with 

Diffusive-ODE structure to enhance the detection performance. 

enhance the character-related saliency features. We employ a three-level PAN-FPN neck for feature 

fusion, integrating SE-blocks [20] into its lateral connections to enhance salient features. A Context-

Aware Spatial Attention (CASA) module is connected at the output of the neck for emphasizing 

regions that likely belong to characters, while suppressing irrelevant backgrounds. Lightweight 

network structures often struggle to learn robust features effectively due to limited training samples, 

leading to suboptimal prediction performance. To address this limitation, we introduced a post-

processing algorithm based on spectral clustering, termed SC-Score, to enhance the model’s recall. 

We will focus on explaining HFCA, CASA, and SC-Score in the following sections. 

3.2. High-frequency Channel Attention  

The structure of the High-frequency Channel Attention (HFCA) module is shown in Figure 3. Given 

that most ancient character rubbings are single-channel grayscale images, a 3×3 convolutional layer 

is employed to extract their dual-channel high-frequency features. These features are then 

concatenated with the original image and dimensionally adjusted to form the final high-frequency 

representation 𝐼ℎ𝑓 . This process can be expressed as: 

 𝐼ℎ𝑓 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐶𝑜𝑛𝑣3×3
(𝐼), 𝜁(𝐼)) (1) 

where I represents original image. ζ refers to downsampling using an average pooling layer. 𝐶𝑜𝑛𝑣3×3 

denotes a 3×3 convolutional layer. concat denotes the concatenation operation. To guide the features 

extracted by the backbone using high-frequency information, we employed a non-local [21] cross 

attention mechanism. To match the dimensions of the feature maps at different stages of the backbone, 

we adjusted 𝐼ℎ𝑓 through 1×1 convolution φ and resize operation: 

 𝐼
ℎ𝑓
𝑖 = 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 (𝜙 (𝐼ℎ𝑓)) (2) 

where bilinear refers to the bilinear interpolation operation. 
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The non-local cross-attention mechanism is calculated as: 

 𝑋′ = 𝐿𝑁 (𝑋𝑖, 𝜇(𝑑𝑖𝑔(𝑋𝑖))) , 𝑤ℎ𝑒𝑟𝑒  𝑑𝑖 =
𝜃(𝑋𝑖)𝜙(𝐼

ℎ𝑓
𝑖 )

⊤

𝑁
 (3) 

where 𝑋𝑖 is the feature at the i-th stage of the backbone. g, θ, φ, and µ are 1×1 convolutional layers. 

N is the normalization factor with the shape of 𝐻𝑖×𝑊𝑖 .𝑑𝑖is the similarity matrix between 𝑋𝑖 and 𝐼ℎ𝑓
𝑖 . 

Different from the original non-local self-attention mechanism, the HFCA module utilizes high 

frequency information to guide the original feature in a cross-attention manner. The HFCA also 

utilizes layer normalization LN rather than summation to enhance the stability of the training process. 

The output of the HFCA module is calculated as: 

 𝑋 = 𝑋′ + 𝐶𝐴 (𝑋′) (4) 

where 𝐶𝐴 denotes the channel attention mechanism [22]. 

3.3. Context-Aware Spatial Attention  

 

Figure 4: The structure of the Context-Aware Spatial Attention (CASA) module. 

The concept of Context-Aware Spatial Attention (CASA) has been explored in various research 

studies [23], [24]. In our implementation, the CASA module is designed to refine neck features by 

incorporating multi-scale contextual information and applying spatial attention to highlight regions 

of interest. As shown in Figure 4, the CASA module consists of two parts: context-aware and spatial 

attention. For each feature level 𝐹𝑖 from the PAN-FPN with shape 𝐻𝑖×𝑊𝑖×𝐶𝑖 , the context-aware 

aggregates multi-scale features 𝐹𝑗 and 𝐹𝑘 from other levels. These features are fused and processed 

through global pooling and convolutional layers to generate the context-aware feature 𝐹𝑖 : 

 𝐹𝑖
𝑐 = 𝐹𝑖 ⋅  𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟𝑠 (𝜌(𝐹𝑗 + 𝐹𝑘)) (5) 

where ρ denotes the global pooling operation. 𝐶𝑜𝑛𝑣𝐿𝑎𝑦𝑒𝑟𝑠 refers to a series of convolutional layers 

with activation functions. The spatial attention is applied to the 𝐹𝑖 : 

 𝐹𝑖
𝑠 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣(𝜁(𝐹𝑖), 𝜌(𝐹𝑖))) (6) 

where sigmoid denotes the sigmoid activation function. ζ denotes the average pooling operation. 

The final output of the CASA module is calculated as: 

 𝐹𝑖
′

= 𝐹𝑖
𝑐 ⋅ 𝐹𝑖

𝑠 (7) 
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3.4. SC-Score  

The Spectral Clustering Score (SC-Score) is a post-processing algorithm that works alongside Non-

Maximum Suppression (NMS) to improve the recall rate of the model’s predictions. The core idea is 

to leverage a spectral clustering [25] to refine confidence scores of predicted boxes based on their 

similarity to a centroid derived from training set boxes in feature space. This ensures predictions align 

with the learned distribution of ancient character features, improving recall and filtering noisy 

predictions. We first extract the feature embeddings 𝑓𝑔𝑡= [b1, b2, . . . , bn] of training set boxes using 

VGG-16 [14]. To calculate a clustering centroid c: 

 𝑐 =
1

𝑛
∑ 𝑏𝑖

𝑛
𝑖=1

 (8) 

where bi is the feature embedding for the ith ground-truth box.During inference stage, we obtain the 

feature embeddings 𝑓𝑝𝑟𝑒𝑑= [p1, p2, . . . , pm] of predicted boxes. Following the clustering algorithm 

described in [25], each predicted box is assigned to k = 2 cluster (relevant and irrelevant) based on 

its similarity to the precomputed centroid c derived from the training set.  

To adjust the confidence scores of predicted boxes, if 𝑝𝑖 is assigned to the relevant cluster, its 

confidence score is updated as: 

 𝑠𝑐𝑖 = 𝑠𝑐𝑖 + 𝜆 ⋅ 𝑒𝑥𝑝 (−
∥𝑝𝑖−𝑐∥2

2𝜎2
) (9) 

where α is a hyperparameter that controls the scaling factor. σ is a hyperparameter that controls the 

similarity threshold. 

4. Experiments  

4.1. Datasets and evaluation metrics 

We evaluate the proposed YOLO-ACD on two ancient character public datasets: Chinese oracle bone 

script [26] and Egyptian hieroglyphs [27]. The Chinese oracle bone script dataset contains 3,066 

images with 18,273 annotated characters, where 2,799 images are used for training and 267 images 

for testing. The Egyptian hieroglyphs dataset contains 105 images with 16,587 annotated characters, 

where 87 images are used for training and 18 images for testing. However the Egyptian hieroglyphs 

dataset is extended from 35 images by simple data augmentation, therefore the training samples are 

limited.  

We report the Average Precision (AP) as the primary evaluation metric. We also report the recall 

rate to provide a comprehensive evaluation of the SC-Score. Besides, we report the Floating Point 

Operations (FLOPs) and the number of parameters (Params) to evaluate the model’s efficiency. 

4.2. Implementation details  

All the experiments are conducted on a computer with an NVIDIA RTX 3090 GPU. The YOLO-

ADC is implemented using PyTorch 1.13.1 and MMYOLO [19]. Other object detection models 

(except for YOLOv10 [28]) that are included in this section are implemented using MMYOLO and 

MMDetection [29] under the same environment.  

For the training process, SGD optimizer is employed with a batch size of 12 and the initial learning 

rate set to 0.01. We train the YOLO-ACD for 100 epochs, other models are trained for different 

epochs according to their convergence speed. All experimental results are obtained at the same input 

resolution of 640×640. Mosaic augmentation [16] is applied for all experiments. 
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4.3. Comparisons  

Table 1: Comparisons with state-of-the-art object detection models on Oracle bone/Egyptian datasets. 

Models AP(%) AP50(%) FLOPS Params 

YOLOv5s 0.386/0.189 0.771/0.319 8.1G 12.3M 

YOLOXs 0.411/0.193 0.796/0.327 13.4G 8.9M 

YOLOv8s 0.420/0.192 0.759/0.320 14.9G 11.4M 

YOLOv8m 0.461/0.211 0.811/0.339 40.1G 26.1M 

YOLOv10s 0.437/0.199 0.761/0.323 21.6G 7.2M 

Faster R-CNN 0.403/0.184 0.788/0.340 63.2G 41.4M 

Ours 0.464/0.218 0.807/0.348 21.5G 12.1M 

 

We compare the proposed YOLO-ACD with several state-of-the-art object detection models, 

including YOLOv5, YOLOX [30], YOLOv8 [12], YOLOv10 [28], and Faster R-CNN [6] with 

ResNet-50 [31] backbone. The results are listed in Table 1. It can be observed that the proposed 

YOLO-ACD outperforms all other models in terms of AP, and has a competitive AP50 with 

YOLOv8m, while maintaining a relatively low FLOPs and Params. Compared to the latest 

YOLOv10s which has similar computational cost, YOLO-ACD outperforms by 6.2% and 9.5% in 

terms of AP on the two datasets, respectively, with only a small increase in FLOPs and parameters. 

Compare to two-stage Faster R-CNN, YOLO-ACD outperforms by 15.1% and 2.4% in terms of AP 

on the two datasets, respectively, with only around 30% of the FLOPs and parameters. As a result, 

the proposed YOLO-ACD demonstrates a superior trade-off between performance and efficiency 

compared to other mainstream object detection models. 

4.4. Ablation Study  

To evaluate the effectiveness of our proposed method, we use YOLOv8s as baseline and conduct 

ablation experiments on the proposed HFCA, CASA, and SC-Score, the  

Table 2 : Ablation experiments of proposed innovations on Oracle bone/Egyptian datasets. Note the 

baseline model is YOLOv8s, which does not include SE-blocks in the neck. 

Baseline HFCA CASA 
SC- 

Score 
AP(%) AP50(%) AR(%) FLOPS Params 

√ × × × 0.420/0.192 0.759/0.320 0.560/0.223 14.891G 11.358M 

√ √ × × 0.435/0.202 0.771/0.325 0.576/0.233 21.501G 2.050M 

√ × √ × 0.427/0.194 0.762/0.321 0.566/0.226 14.894G 11.361M 

√ × × √ 0.417/0.195 0.746/0.323 0.563/0.229 14.891G 11.358M 

√ √ √ × 0.461/0.209 0.811/0.338 0.586/0.240 21.503G 12.053M 

√ √ √ √ 0.461/0.216 0.810/0.344 0.583/0.248 21.503G 12.053M 

 

results are shown in Table 2. It can be observed that the incorporation of HFCA and CASA modules 

significantly improves the performance of the baseline model from 0.420/0.192 to 0.461/0.209 in 

terms of AP, with only 6.612 GFLOPs and 0.695M Params increase. The results indicate that the 

HFCA and CASA modules effectively improve the model’s performance by enhancing the feature 

extraction capabilities using attention mechanisms. As for the SC-Score, which brings a significant 

improvement in AR (Average Recall) on the Egyptian hieroglyphs dataset, demonstrating its 

effectiveness in enhancing the recall rate of the model’s predictions under limited data scenario. 
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4.5. Qualitative Results  

We provide qualitative results of the proposed YOLO-ACD from two aspects: attention maps and 

detection results. The attention maps from the middle neck layer in the proposed YOLO-ACD are 

shown in Figure 5. For each set of image in Figure 5, the first row shows the original image, the 

second row shows the attention map from the baseline model (YOLOv8s), and the third row shows 

the attention map from the YOLO-ACD. It can be observed that the proposed HFCA and CASA 

modules effectively guide the model to focus on the character regions, enhancing the feature 

representation capabilities of the backbone network. The detection results are shown in Figure 6, 

where the proposed YOLO-ACD demonstrates more robust performance than the baseline model in 

detecting ancient characters. 

5. Conclusion 

In this paper, we proposed a novel lightweight object detector, YOLO-ACD, specifically designed 

for ancient character detection. The proposed YOLO-ACD integrates the HFCA and CASA modules 

to enhance the feature representation capabilities of the feature extraction process and guide the model 

to focus on character regions. The SC-Score algorithm is introduced to enhance the recall rate of the 

model’s predictions under limited data scenario. The proposed method achieves the state-of-the-art 

performance and a superior trade off between performance and efficiency compared to other object 

detection models, demonstrating its effectiveness and application potential in real-world ancient 

character detection. 

 

Figure 5: Attention maps from the neck layers (middle level) in the proposed YOLO-ACD. 

 

Figure 6: Detection results of the proposed YOLO-ACD. 
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