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Abstract. In recent years, the applications of MEMS inertial sensors have expanded significantly. 

The majority of applications challenges the accuracy, stability, and sensitivity of inertial sensors. 

Noise characteristic is a crucial performance indicator for sensors. though  diverse methods for 

analyzing and classifying sensor noise from various perspectives are proposed, t his study 

examines a prominent noise analysis technique known as Allan Variance (AVAR). According 

to the results of several computations, this approach classifies inertial sensor noise into five 

groups. In addition, a set of algorithms are proposed to minimize noise in order to limit sensor 

noise's impact on the system. In general, these algorithms disregard the type of noise and assume 

that it is random. In this paper, a quick introduction to these algorithms will be provided. A 

comprehensive investigation of accelerometer noise will conclude this paper. The noise signal is 

gathered under various conditions for comparison. Typically, this research illustrates a potential 

difficulty with microcontroller noise signal reception accuracy. The impact and potential 

explanation of such a problem on noisy signal reception will also be discussed. 

Keywords: noise, sensor, algorithm, accelerometer, Allan Variance. 

1.  Introduction 

MEMS is an acronym for microelectromechanical systems. It can be utilized to manufacture 

micrometer-scale structures, electronics, and systems. Inertial sensors based on MEMS technology are 

rapidly becoming ubiquitous due to its incorporation into numerous types of consumer electronics, such 

as smart phones, tablets, gaming systems, TV remotes, toys, power tools, and wearable sensors. 

Accelerometers and gyroscopes are the most extensively used inertial sensors. 

Historically, the Allan Variance (AVAR) was used to determine the frequency stability of clocks, 

oscillators, and amplifiers. With the increasing use of Inertial Sensors, AVAR is used to measure the 

sensors' properties. In reality, AVAR focuses on the intrinsic noise of the sensors, particularly the 

physical units of the sensors. Extrinsic noise originating from circuits and environs is excluded from the 

measurement. However, we can still examine the circuit as a full system and study noise at a higher 

level using the AVAR. In terms of such measurements, the final results summarize the noise signals 

with similar properties. 

Fundamental components of numerous control systems are noise reduction algorithms. Some 

algorithms offer excellent responsiveness, while others compromise it for extreme accuracy. Numerous 

algorithms have been implemented and expanded in various systems and domains. Most MEMS Inertial 

sensors in the real world have noise reduction modules. 
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The ADXL346 accelerometer is an ultralow power digital accelerometer. It is suitable for mobile 

device applications and a variety of embedded usage. It contains around thirty registers for 

configurations and data buffers that are user-specific. In addition, it includes a sequence of interruptions 

for various events, including tap and free fall. In this experiment, we intend to retrieve updated data 

from sensor data registers. We consider the sampling, filtering, ADC, and other steps as a system and 

calculate noise signals using PSD and AVAR. 

This paper reviews AVAR and noise signal reduction algorithms. We typically investigate the sorts 

of noise each algorithm handles. PSD and AVAR were used to detect noise on the ADXL346 

accelerometer. In this experiment, the system configuration processes and detection results are unique. 

2.  Review 

2.1.  Power Spectral Density 

Power Spectral Density (PSD) is a fundamental technique for digital signal processing [1]. In terms of 

MEMS inertial sensor noise, the connection between density and frequency represents the properties of 

various types of noise, as defined by function S(f). PSD can be easily determined using the square root 

of the absolute value of the signal's Fourier Transform. Normalization of the factor can be applied to the 

result in order to stabilize the output amplitude regardless of the sampling frequency. 

2.2.  Allan Variance and noise types 

Allan Variance(AVAR) is a time-domain analysis technique that is adapted to the analysis of MEMS 

inertial sensor noise [2]. It clusters the digital noise signal into a series of consecutive groups. Each of 

these groups contains T samples. T is a variable whose value determines the AVAR result σ(T) given the 

digital signal.  

The relationship between σ(T) and T defines different types of noise from a mathematical perspective. 

An important property of AVAR is its tight relationship with the PSD of the signal. 

σ2(𝑇) = 4 ∫ 𝑆(𝑓)
𝑠𝑖𝑛4(π𝑓𝑇)

(π𝑓𝑇)2

∞

0

𝑑𝑓 

That relationship indicates that AVAR does not provide more information than the PSD in that it can 

be calculated directly from the PSD. However, as the AVAR can be processed merely in the time domain, 

it can be applied to more signals than the PSD. An example is a specific type of noise called ‘rate ramp’ 

which will be shown in the following pages. In addition, the time complexity of the FFT algorithm is 

much greater than that of the AVAR calculation, and the PSD approximation algorithms may result in 

varying degrees of result distortion. These advantages contribute to AVAR's appeal. 

AVAR can identify five different types of noise [3], including: Quantization Noise(QN), 

Angle/Velocity Random Walk, Bias Instability, Rate/Acceleration Random Walk, and Rate Ramp. 

2.2.1.  Quantization noise. Quantization noise is a type of noise introduced by the quantization of analog 

signal. During this process, an analog value is rounded to the nearest digital value, leading to a slight 

distortion in the signal. It can be calculated that the AVAR of quantization noise can be expressed as 

below: 

σ2(𝑇) =
3𝑄2

𝑇2
 

While Q stands for the quantization coefficient given by 

𝑄2 =
𝑞2

12
 

q stands for the quantization step size(resolution) of ADC [4]. Such type of noise can be reduced by 

increasing the resolution of the ADC. 

2.2.2.  Angle/Velocity Random Walk. Angle Random Walk refers to the random walk of a gyroscope’s 

measurement. Similarly, Velocity Random Walk adapts to the accelerometers. Random walk refers to a 
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mathematical model of a stochastically random process. Such a process accumulates the system white 

noise and adds the summation of noise to the true value. The source of the random walk is suggested to 

be the thermo-mechanical noise inside a system. The AVAR of this type of noise can be calculated as 

σ2(𝑇) =
𝑁2

𝑇
 

where N is the angle(velocity) random-walk coefficient given by 

𝑆(𝑓) = 𝑁2 

2.2.3.  Bias Instability. This type of noise refers to the flicker noise. It is a widespread noise whose origin 

is still unclear. A series of complex models have been proposed to analyze the flicker noise of 

semiconductors, ADC circuits, and many other different systems. The AVAR of such noise is calculated 

as 

σ2(𝑇) =
2𝐵2

π
𝑙𝑛2 

where B is the is the bias instability coefficient given by 

𝑆(𝑓) = {

𝐵2

2𝜋𝑓
, 𝑓 ≤ 𝑓0;

0, 𝑓 > 𝑓0.

 

2.2.4.  Rate/Acceleration Random Walk. This is a type of noise whose origin is also not unclear. The 

PSD of such noise is similar to that of a Brown noise. The integration of such noise will also affect the 

angle measurement of a gyroscope or the velocity measurement of an accelerometer. Allan noise of such 

type of noise is shown as 

σ2(𝑇) =
𝐾2𝑇

3
 

where K is the rate/acceleration random walk coefficient given by 

𝑆(𝑓) = (
𝐾

2π
)

2 1

𝑓2
 

2.2.5.  Rate Ramp. Rate ramp describes a systematic error that the measurement of the sensor drifts as 

time passes. Such a noise cannot be measured by PSD for it does not meet the prerequisite of Fourier 

Transformation. However, AVAR can still be applied to it and is shown as 

σ2(𝑇) =
𝑅2𝑇2

2
 

where R is the rate ramp coefficient given by 

𝑁𝑟𝑎𝑡𝑒_𝑟𝑎𝑚𝑝 = 𝑅𝑡 

2.3.  Noise Reduction Algorithm 

2.3.1.  Recursive Least Square. Least Square is a technique that can be used to simulate the linear system 

function and reduce sensor noise. The Recursive Least Square is an adaptation of the Least Square 

algorithm. This improvement eliminates the requirement to construct the inverse matrix for each sample 

while maintaining a minimal system delay. Such an algorithm disregards any noise feature properties. 

It forecasts the output stochastically based on historical inputs. There are algorithms comparable to 

Recursive Least Square. The Least Mean Mean Square employs Mean Square Error, a distinct 

measurement or so-called 'loss function', to calculate and control system error [5]. Enhanced Recursive 

Least Square algorithms are also presented for various optimizations [6-7]. 

2.3.2.  Kalman Filter. The Kalman Filter is an extremely popular algorithm [8]. It is currently integrated 

inertially into sensors and several control systems. The Kalman filter assumes the summation of noise 
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follows a Gaussian distribution. Note that the Kalman Filter disregards the PSD, AVAR, and other noise 

features. 

There exist a series of algorithms that extend the Kalman Filter. The Extend Kalman Filter and the 

Incremental Kalman Filter are two examples[9-10]. 

2.3.3.  Various Machine Learning and Deep Learning Algorithms. Every adaptive algorithm can be seen 

from a machine-learning perspective. These algorithms include the “training” and “predicting” steps 

based on signal datasets. In this term, many popular machine learning and deep learning algorithms are 

also used to reduce sensor noise. For example, the SVM, RNN, and their variations have been studied 

on some sensors[11-12]. However, their implementations are limited, partly due to the time complexity 

and space complexity. 

2.3.4.  Wavelet Threshold. Wavelet Threshold is based on wavelet decomposition. With wavelet 

decomposition, a signal is iteratively decomposed into a tree-like structure, where each leaf consists of 

wavelet coefficients. Meanwhile, the algorithm defines wavelet threshold according to signal 

characteristics and applies hard threshold processing and soft threshold processing to each wavelet 

coefficient. The original signal can then be reconstructed with these new coefficient values.  

Wavelet Threshold have been mainly applied to reduce Gaussian white noise in speech and image 

signals [13-14]. There are also studies that try to improve the performance of this algorithm on non-

Gaussian noise. 

3.  Experiment 

3.1.  Basic Ideas 

We conducted an experiment about sensor noise detection on an accelerometer, ADXL346. The 

experiment was held at room temperature. The average supply voltage is about 2.68V. The accelerometer 

was placed horizontally on standing. We changed the configuration of the sensor and recorded its noise 

signal. 

3.2.  System Device 

The ADXL346 accelerometer is a 3-axis digital accelerometer. It can transmit data through SPI and I2C 

digital interfaces. It supports user-selectable measurement ranges and output data rates. Users can write 

new values into several configuration registers to configure the sensor behaviors. 

The data of the sensor are saved in 6 data registers (2 for the x-axis, 2 for the y-axis, and 2 for the z-

axis). The data for each axis are saved in int16_t format. We used an STM32F103 microcontroller to 

read sensor data through the SPI interface and transmit data to the PC through the USART interface. A 

serial port monitor software on the PC is used to save and print out the data. 

 

Figure 1. Circuit Configuration. 
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During each measurement, we only read and receive the noise signal of a single axis. The data 

consists of three bytes: a flag byte, the first data register byte, and the second data register byte. The flag 

byte is used to mark up the coming of new register data. The resolution and the range of the sensor 

guarantee that ‘0xCC’ will never appear as a value of data registers, shown as figure 2. 

 

Figure 2. Data Flow. 

3.3.  System configuration 

A question of this system is that the microcontroller does not know when the sensor has updated its data. 

In other words, the data read operation conducted by the microcontroller is independent of the data 

update operation conducted by the sensor. The mismatch of the data read rate and update rate will cause 

serious distortion in the signal. 

We dealt with this question in this experiment by applying different configurations and observing the 

received data. Specifically, we firstly set the SPI baud rate to 2.25MHz, and then configure the data 

update rate; next, we configure the USART baud rate, and finally count the data repetitive times. The 

results are shown in table 1. 

Table 1. several attributes under different configured data update rate. 

configured data 

update rate (Hz) 

USART1 

baud rate (Hz) 

Received 

bits per sec 

(bits) 

same data 

repeat times 

Actual data 

update rate (Hz) 

25 57600 42000 72 24.31 

25 19200 14000 24 24.31 

100 19200 14000 6 97.22 

The Relationship between each variable is shown below: 

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 =  
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐

𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 ∙  𝑠𝑎𝑚𝑒 𝑑𝑎𝑡𝑎 𝑟𝑒𝑝𝑒𝑎𝑡 𝑡𝑖𝑚𝑒𝑠
 

The ‘data bits’ refers to the number of bits transmitted to the PC in every cycle whose value is 24 in 

this experiment. The observation is listed as:  

𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 =  0.972 ∙  𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 

𝑈𝑆𝐴𝑅𝑇 𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 =  32 ∙  𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑝𝑑𝑎𝑡𝑒 𝑟𝑎𝑡𝑒 

The first relationship shows that the actual data update rate is slightly lower than the configured data 

update rate due to system delay. The second relationship shows that the USART1 baud rate should be 

configured to about 32 times the data update rate of the sensor. 

Under this configuration, the noise brought by the mismatch of data read rate and data update rate 

can be partially limited. 

3.4.  Noise detection and analysis 

The first sets of y-axis noise data are measured under the condition of 

SPI baud rate = 2.25MHz 

USART baud rate = 102400Hz 

Data update rate = 3200Hz 
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Figure 3. noise signal at 102400 Hz USART Baud Rate. 

Without the DC bias, the PSD of the signal is shown as below 

 

Figure 4. PSD of signal at 102400 Hz USART Baud Rate. 

The AVAR of the signal is shown as below, figure 5. 

 

Figure 5. AVAR of signal at 102400 Hz USART Baud Rate. 

We model the AVAR with formula 

σ(𝑇) = ∑ 𝑎𝑖

5

𝑖=1

𝑇𝑖−3 

We use the Least Square to calculate a1 ~ a5. And the result is shown in figure 6. 
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Figure 6. coefficients of model at 102400 Hz USART Baud Rate. 

According to the AVAR, the Quantization Noise and the Velocity Random Walk are the two main 

types of noise. However, the PSD shows a number of peaks spread among the low-frequency noise. 

These peaks are weird and appear at certain frequency. 

 

Figure 7. augmented vision of PSD at 102400 Hz USART Baud Rate. 

In the third part of this section, we introduced the mismatch of data read rate that will bring about 

additional distortion to the signal. We suggested that the peak intervals have relationship with the 

mismatch. To prove it, we changed the data read rate and observed whether the intervals changed 

accordingly. 

We configured the data read rate at different values by regulating the USART baud rate. The next 

figure 8-9 depicts the noise signal PSD when the USART baud rate is configured at 103600Hz. Under 

this configuration, the peaks of the PSD seem to ’converge’ at lower density. 
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Figure 8. PSD of signal at 103600 Hz USART Baud Rate. 

 

Figure 9. augmented vision of PSD at 103600 Hz USART Baud Rate 

The AVAR of this situation is shown in figure 10. 

 

Figure 10. AVAR of signal at 103600 Hz USART Baud Rate 

The coefficient of a1~a5 in previous model is calculated as below figure 11. 
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Figure 11. coefficients of model at 103600 Hz USART Baud Rate. 

The figure 11 shows that due to the different peak intervals, the values of a1 and a2 varies 

significantly under different USART baud rate. The distortion of noise signal also affects the shape of 

AVAR function graph. 

We recorded the peak intervals under different USART baud rate configurations. The following table 

2 shows a series of measurement. These data prove that the peak intervals are under control of the 

difference between data read rate and data update rate. 

Table 2. Intervals under different USART baud rate. 

USART baud rate (Hz) Interval (Hz) 

105400 53.57 

103800 5.38 

103700 5.56 

103600 0.42 

103500 4.07 

103400 3.95 

103300 8.15 

103200 13.55 

102800 22.79 

Although the phenomena has been seen, no definitive conclusion can be drawn on the origins of these 

noise peaks. Unknown is also the mathematical explanation for the influence of the discrepancy between 

data read rate and data update rate. However, we propose that the difference between data read rate and 

data update rate separately shifts different types of noise. The model of the suggestion is displayed below. 

The original noise source N(f) consists of 2 signals as 

𝑁(𝑓) = 𝑘1𝑄𝑁(𝑓) + 𝑘2𝑉𝑅𝑊(𝑓) + ⋯ 

Under the mismatch of data read rate and data update rate, the noise signal is distorted as 

𝑁(𝑓) = 𝑘1𝑄𝑁(λ1𝑓 + μ1) + 𝑘2𝑉𝑅𝑊(λ2𝑓 + μ2) + ⋯ 

While Using Least Square to calculate the coefficient of each type of noise, The model is translated 

as 

𝑁(𝑓) = 𝑘1
′ 𝑄𝑁′(𝑓) + 𝑘2

′ 𝑉𝑅𝑊′(𝑓) + ⋯ 

It is difficult to keep that k1 = k1’ and k2 = k2’ after these steps. 

4.  Conclusion 

This study begins by discussing the AVAR and its application to the analysis of MEMS inertial sensors. 

AVAR can be derived simply from a signal's PSD, indicating that it does not include additional 

information. However, because PSD is a frequency-domain analysis tool, it has inherent limitations. In 

particular, PSD cannot be employed to rate ramp noise since the Fourier Transform is inappropriate for 
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this sort of noise. Since AVAR's calculations are performed in the time domain, this constraint does not 

apply. Finally, AVAR can recognize five distinct types of system noise. We also describe the origins of 

these sounds. Typically, the cause of Rate/Acceleration Random Walk noise remains obscure. 

This study reviews the strategies used to minimize MEMS inertial sensor noise. Typically, we 

investigate the forms of noise applied by each method. The majority of random noise reduction 

algorithms concentrate on Gaussian noise or white Gaussian noise. With the use of these techniques, the 

Velocity Random Walk can be significantly inhibited in terms of the accelerometer. 

In the final experiment, we detected and recorded the noise signal of the ADXL346 accelerometer. 

We demonstrate the challenge of recording the noise signal precisely in this setup. The data read rate of 

the microcontroller and the data update rate of the sensor must coincide to prevent signal noise distortion. 

In addition, we investigate this element's impact on the signal and provide a mathematical model to 

simulate the outcome. 
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