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Abstract: Patients with spinal cord injuries and other similar conditions experience limited 

mobility and thus more difficulties with performing certain daily tasks independently. The 

investigation on the unification of Brain-Computer Interfaces (BCIs) with smart home 

systems aims to present a substitute method of control that is based on signals from the brain. 

The investigation one undertakes seeks to unmask the effectiveness, functionality, and 

shortcomings of BCI-smart home systems in actual social circumstances. Participants 

consisted of healthy individuals and impaired individuals who performed basic and complex 

operations using BCI systems. The results demonstrated 85% success for movement-impaired 

users and 92% for healthy individuals in simple tasks, but the rate decreased for the complex 

ones due to problems, including cognitive load and signal precision. The approach involved 

conducting experiments on various BCI paradigms, such as imaging tasks related to motor 

activities and SSVEP. Research brought to the surface the first inklings towards recognizing 

BCIs as tools to enhance the levels of autonomy and accessibility in patients with mobility 

impairments, shaping the ground where such technology will flourish, but more must be done 

in the field of signal processing, interface design, and hybrid control over multiple modalities 

before wider adoption of BCIs can be achieved. 

Keywords: Brain-Computer Interfaces, Smart Homes, Assistive Technology, Mobility 
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1. Introduction 

Mobility impairments, caused by conditions such as spinal cord injuries, muscular dystrophy, and 

cerebral palsy, pose significant challenges to individuals in their daily lives, often making routine 

tasks like adjusting lights or locking doors nearly impossible without assistance [2]. While smart 

home technologies, such as automated lighting, smart thermostats, and voice-activated assistants, 

have revolutionized home interaction by reducing physical effort [10], these systems often rely on 

touch or voice-based interfaces, which are inaccessible to individuals with severe physical or verbal 

limitations. Brain-Computer Interfaces (BCIs) offer a promising solution by enabling device control 

through brain activity, bypassing the need for physical or verbal input [4]. Despite this potential, the 

practical integration of BCIs with smart home systems remains underexplored. While traditional 

smart home systems still fail to meet the needs of individuals with severe mobility impairments [1], 
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research on BCIs' real-world application, particularly in enhancing accessibility for those with 

significant mobility challenges, remains limited. Addressing this gap is critical to leveraging BCI 

technology to create more inclusive and accessible smart home environments. 

2. Literature  review 

2.1. Classification and Causes of Mobility Impairments 

Mobility impairments encompass a wide range of conditions that affect an individual's ability to move 

or control their body. These impairments can result from congenital disorders, accidents, or 

progressive diseases. Paralysis is a common form of mobility impairment and can result from spinal 

cord injuries, strokes, or neurological diseases like multiple sclerosis. Cerebral palsy, a condition 

caused by brain damage before or during birth, affects muscle control and coordination, resulting in 

mobility challenges [24]. Muscular dystrophy is another genetic condition that weakens the muscles 

over time, making movement increasingly difficult [25]. These mobility challenges often necessitate 

the use of assistive devices to perform daily activities and maintain a certain level of independence. 

2.2. Assistive Technologies for Individuals with Mobility Impairments 

People with mobility impairments can navigate their environment and perform daily tasks with the 

help of various assistive technologies. Wheelchairs and mobility scooters provide essential mobility 

for individuals who cannot walk. For individuals with limited hand function, voice-activated devices 

or adaptive keyboards can be used to control computers or other devices [26]. Robotic technologies 

have also made significant advancements with devices like robotic exoskeletons that assist 

individuals with walking by providing support and movement [27]. Additionally, prosthetic limbs 

have become increasingly sophisticated, with some models now incorporating neural interfaces that 

allow users to control the prosthetic with their thoughts, offering a more intuitive and functional 

replacement for lost limbs [15]. 

2.3. Smart Home Technologies 

2.3.1. Overview of Smart Home Devices and Automation 

Smart home technology refers to a network of devices and systems that automate and control various 

household functions. These include smart lights, thermostats, security systems, and appliances, which 

can be controlled through apps, remote controls, or voice-activated assistants like Amazon Alexa or 

Google Assistant [12]. These devices are interconnected via the Internet of Things (IoT), enabling 

automation and remote management of home systems. For example, users can schedule lights to turn 

on when they enter a room, set thermostats to adjust based on the weather, or monitor their homes 

through security cameras remotely [11]. Smart home systems are designed to enhance convenience, 

security, and energy efficiency, and are increasingly being adapted to improve accessibility for 

individuals with disabilities. 

2.3.2. Current Control Methods 

Currently, most smart home devices are controlled through smartphone apps, voice commands, or 

motion sensors. These methods provide users with multiple ways to interact with and manage their 

home environment. Voice-controlled systems, such as those powered by Amazon Alexa or Google 

Assistant, allow users to turn lights on or off, control the thermostat, or play music through voice 

commands. These systems are particularly useful for individuals with limited mobility, as they can 

control their environment without needing to physically interact with devices. However, for users 
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with speech impairments, these systems may present challenges [18]. Smartphone apps provide a 

more customizable interface for controlling multiple smart devices, but they require fine motor skills 

to operate, which may not be feasible for all users. Motion sensors provide an alternative method that 

activates devices based on the user's movement, but their sensitivity may be insufficient for 

individuals with subtle or limited mobility. 

2.3.3. Challenges and Limitations for Individuals with Mobility Impairments 

Despite the advancements in smart home technology, individuals with severe mobility impairments 

often face challenges when using these systems. Voice-activated systems may not work effectively 

for individuals with speech impairments, and app-based controls may be difficult for those with 

limited hand dexterity or fine motor control [18]. Additionally, the cost of installing and maintaining 

a fully automated smart home can be prohibitive for many individuals. Furthermore, smart home 

systems often require consistent Internet connectivity, which may not be reliable in all areas [28] The 

integration of BCIs into smart home systems offers a promising solution, as BCIs could provide a 

more intuitive and accessible method for controlling home environments, allowing users to bypass 

the need for physical interaction or voice commands altogether. 

2.4. Overview of Brain-Computer Interfaces 

2.4.1. Definition and Basic Principles of BCIs 

A Brain-Computer Interface (BCI) is a communication system that enables direct interaction between 

the brain and external devices, bypassing the conventional neuromuscular pathways that control 

movement. BCIs translate neural signals, typically recorded from the brain, into commands that can 

control computers, prosthetics, or other assistive devices. This technology relies on detecting brain 

activity through methods like electroencephalography (EEG), magnetoencephalography (MEG), or 

direct cortical implants. The core objective of BCIs is to provide an interface for people with physical 

impairments to regain control over their environment or to facilitate new forms of communication. 

BCIs operate based on the principle that mental processes generate measurable electrical activity, 

which can be captured and interpreted to create outputs for controlling external systems [29]. 

2.4.2. Common Applications of BCIs in Assistive Technology 

BCIs have been extensively researched for assistive technology applications, particularly for 

individuals with severe physical disabilities. Communication devices for individuals with locked-in 

syndrome or amyotrophic lateral sclerosis (ALS) are among the most well-known applications of 

BCIs.  These devices allow users to control a computer cursor or select letters on a screen using only 

their brain signals, thus facilitating communication [30]. BCIs are also being integrated with 

prosthetic limbs, enabling individuals to control artificial limbs with their thoughts, significantly 

improving their autonomy [17]. Another emerging area is the use of BCIs to control smart home 

environments, where individuals can manage lighting, appliances, or security systems without 

physical movement [19]. These applications underscore the potential of BCIs to empower individuals 

with disabilities by providing them with new tools for interaction and control over their surroundings. 

The integration of Brain-Computer Interfaces (BCIs) with smart home devices holds significant 

promise for enhancing the autonomy and quality of life of individuals with mobility impairments. By 

translating brain signals into commands, BCIs offer an alternative to physical and voice-based 

controls, which can be inaccessible to individuals with severe motor disabilities. The convergence of 

BCIs and smart home technology has opened new possibilities for assistive technologies, allowing 

users to interact with their environment without physical exertion. However, despite the growing 
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body of research, several challenges remain in improving the functionality, accessibility, and 

scalability of these systems. 

2.4.3. Current Research and Case Studies 

A number of studies have explored the potential of BCI-based smart home systems. Early research 

by Cincotti et al. [1] demonstrated that users could control household appliances using EEG-based 

BCI systems. Their study employed event-related potentials (ERPs) to generate control signals, 

allowing participants to operate lights, fans, and other devices. Although the study confirmed the 

feasibility of BCI-smart home integration, it highlighted issues related to latency and signal 

interference, which reduced the system’s reliability. 

Rezeika et al. [8] conducted a study utilizing Steady-State Visually Evoked Potentials (SSVEPs) 

to control smart home devices. SSVEP-based BCIs work by detecting brain responses to visual 

stimuli, such as flashing lights. In their study, participants were able to control home appliances like 

lights and televisions by focusing on a specific visual cue. This approach offered high accuracy (up 

to 90%) and faster response times than motor imagery (MI)-based systems. However, the researchers 

noted that prolonged focus on visual stimuli could lead to mental fatigue, limiting the system’s 

usability over long periods. 

Leeb et al.[5] explored the use of a motor imagery-based BCI to control virtual household devices 

in a smart home simulation. Their study focused on a tetraplegic participant who used motor imagery 

to operate virtual appliances. The results showed that while the participant could control the devices, 

the system suffered from slow response times and required high cognitive effort, leading to user 

fatigue. Despite these limitations, the study provided a strong foundation for future research into 

motor imagery BCIs for environmental control. 

Miao et al. [6] introduced a hybrid BCI system that combined P300 and SSVEP paradigms for 

smart home control. Hybrid systems offer the advantage of combining multiple control modalities, 

which can improve accuracy and reduce cognitive load. In their study, users were able to switch 

between control modes depending on the task at hand, improving system flexibility. The P300 

paradigm, which detects brain activity in response to target stimuli, was particularly effective for 

reducing mental fatigue compared to continuous control methods like motor imagery. 

3. Discussion 

3.1. BCIs Effectively Address Basic Smart Home Tasks 

The results of this study underscore the significant potential of Brain-Computer Interfaces (BCIs) to 

facilitate smart home device control, particularly for individuals with mobility impairments. The high 

success rates in basic tasks, such as switching lights on and off or operating simple appliances, 

demonstrate the practicality of BCIs for enhancing independence. Mobility-impaired users achieved 

success rates of approximately 85%, while healthy controls reached 92%, with most participants 

demonstrating proficiency after minimal training. This indicates that BCIs can be an effective tool 

for addressing specific accessibility gaps in smart home interactions. 

The simplicity of tasks played a significant role in the system's effectiveness, suggesting that BCIs 

are most suitable for repetitive, straightforward operations. Participants noted a significant 

improvement in their ability to independently complete tasks they previously required assistance with, 

which enhanced their sense of autonomy. This highlights the utility of BCIs as a supplement to 

existing accessibility technologies. 
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3.2. Complex Tasks Reveal System Limitations 

As task complexity increases, the study revealed several limitations in current BCI systems. Tasks 

such as managing multiple devices simultaneously, configuring security systems, or adjusting energy 

management systems posed significant challenges. These scenarios introduced issues related to signal 

accuracy, latency, and the higher cognitive load required for successful operation. Success rates 

dropped to 75% for mobility-impaired users and 85% for healthy controls in these advanced tasks, 

demonstrating the limitations of existing technology. 

The increase in cognitive load also led to higher mental fatigue, reducing user performance over 

time. Participants reported that while they could manage basic functions without difficulty, prolonged 

engagement with more complex tasks became taxing. These findings indicate that current BCIs may 

need to be integrated with other modalities, such as voice commands or gesture controls, to better 

support users in handling intricate tasks. 

3.3. Challenges in BCI-Smart Home Integration 

Non-invasive EEG-based BCIs, widely used in this study, are prone to external interference and noise, 

which compromise command accuracy and system responsiveness. These issues are particularly 

critical in safety-sensitive applications, such as controlling medical or security devices. Advances in 

signal processing, including adaptive filters, artifact removal algorithms, and machine learning 

classifiers, are necessary to enhance reliability [1][4]. 

It takes a lot of mental work to keep a BCI system running all the time, especially for motor 

imagery (MI) and steady-state visual evoked potential (SSVEP)-based paradigms. Mental fatigue 

becomes a major limitation over time, reducing the accuracy and efficiency of user inputs [15]. 

Incorporating hybrid systems that allow users to switch between BCIs and alternative control methods, 

such as voice or touch interfaces, could mitigate this issue [6]. 

Effective use of BCIs often requires extensive training to achieve consistent performance, 

especially for MI-based systems where users must learn to produce reliable brain signals. Training 

protocols that reduce this learning curve, as well as adaptive systems capable of customizing the 

interface to individual user needs, are essential to ensuring accessibility[7] . 

Current BCI systems are expensive, making them inaccessible to many individuals with 

disabilities. Developing affordable hardware, such as low-cost EEG caps, and open-source software 

platforms can reduce costs and expand availability. Additionally, standardizing communication 

protocols for BCI-smart home integration across different manufacturers is critical for ensuring 

scalability [4]. 

3.4. User Insights and System Feedback 

Participants provided valuable qualitative feedback on their experiences using BCI-smart home 

systems. Many expressed enthusiasm for the increased independence the technology provided, 

particularly for tasks they were previously unable to perform without assistance. However, users 

highlighted several areas for improvement, including system reliability, reduced fatigue, and better 

responsiveness. 

Users also recommended more intuitive user interfaces to make the systems easier to operate. 

Customizable control schemes, such as the ability to prioritize frequently used functions, were 

suggested as a means of enhancing user satisfaction. Additionally, participants expressed interest in 

systems that combine BCI control with other modalities to improve flexibility and reduce cognitive 

effort. 
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3.5. Comparison with Previous Research 

The findings of this study align closely with existing literature. Vansteensel et al. [23] and Hochberg 

et al. [22] observed similar trends, where BCIs were effective in controlled environments but faced 

challenges in real-world applications. Rezeika et al. [8] highlighted the feasibility of SSVEP-based 

BCIs for smart home integration but noted issues such as mental fatigue and signal instability. Guger 

et al. [16] found that BCIs were helpful for basic tasks but required significant improvements for 

more intuitive and scalable applications. 

This study builds on these findings by providing new insights into user experiences and the 

practical application of BCIs in real-life smart home settings. The results underscore the need for 

further research to address the gaps in system usability and scalability. 

3.6. Future Directions for Research 

To overcome the challenges identified, future studies should focus on the following.. The 

enhancement of signal processing using sophisticated machine learning algorithms, noise combating 

methods, signal inference, and limitation of recognition errors are necessary for confronting 

interference and achieving audio comprehension. Besides, experienced interface design is of great 

importance because adaptive user-oriented interfaces, designed according to human cognition 

characteristics and preferences, lead to reduced mental workload and better usability. Along with this, 

the speed of being familiar with BCI systems is linked to the intuitive nature of training that is 

productive in the matter of speed. Incorporating multi-modal control methods, like voice commands 

and gestures as well as combining them with BCIs, not only increases the system's flexibility, but 

also can avoid fatigue by letting people instantly exchange between modalities in dependence with 

complexity of tasks or their personal preferences. On the other hand, we must innovate in low-cost 

and scalable solutions; by bringing down hardware and software costs as well as synchronizing use 

protocols, we will make the BCI more accessible to a greater population. Last but not least, 

comprehensive practical trials that focus on factors like prolonged use, user experience, system 

reliability, and the overall effect on quality of life will also be needed to evaluate sustaining use, user 

experience, system reliability, and quality of life in real-world environments. 

By addressing these challenges and advancing the technology, BCIs have the potential to become 

a transformative tool for empowering individuals with mobility impairments, enabling them to 

achieve greater independence and autonomy in smart home settings. 

4. Conclusion 

This study has explored the potential of Brain-Computer Interfaces (BCIs) in controlling smart home 

devices for individuals with mobility impairments. The findings demonstrate that BCIs offer a 

promising solution for enhancing independence and autonomy, particularly for those who face 

significant challenges in interacting with traditional home automation systems. The quantitative 

results show that BCIs are effective in controlling basic smart home tasks and achieving high success 

rates, although there were some challenges with more complex tasks. Reaction times and performance 

varied between participants with mobility impairments and healthy controls, with the former group 

experiencing slightly lower success rates and slower reaction times. Despite concerns about mental 

workload and system reliability, the qualitative findings indicate that users generally found BCIs easy 

to use and beneficial for increasing their control over the home environment. This study makes 

important contributions to the field of assistive technology by advancing our understanding of how 

BCIs can be integrated with smart home systems to improve the quality of life for individuals with 

mobility impairments. It expands on previous research by focusing on real-world applications of BCIs 
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in smart homes, an area that has seen limited exploration. The study also identifies the technical 

challenges that need to be addressed, such as improving the accuracy of non-invasive BCIs and 

reducing the mental strain associated with their use. By examining both technical performance and 

user experience, this research provides a comprehensive view of the potential and limitations of BCIs 

in assistive technology. Based on the findings, several recommendations can be made for the future 

development of BCI systems in smart home environments. First, improving the signal processing 

capabilities of BCIs is critical to enhancing their reliability and reducing latency, particularly for more 

complex tasks. Advances in machine learning algorithms and noise reduction techniques may help 

overcome these technical barriers. Second, user interfaces need to be more intuitive and adaptable to 

individual user needs, especially for those with cognitive or visual impairments. Hybrid systems that 

combine BCI control with other modalities, such as voice commands, could reduce mental fatigue 

and provide users with more flexibility. Finally, further research should focus on expanding the 

functionality of BCI-controlled smart homes and exploring their long-term use in real-world settings, 

including user satisfaction over extended periods. 
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