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Abstract: With the rapid advancement of information technology and the widespread 

adoption of cloud computing, data security and privacy protection have increasingly become 

global priorities. In this context, Fully Homomorphic Encryption (FHE) has emerged as a 

sophisticated encryption technology capable of performing arbitrary computations on 

encrypted data without the need for decryption, thereby attracting significant interest from 

both academia and industry. Initially proposed by Rivest et al. in 1978 and practically realized 

by Gentry in 2009, FHE has evolved through four generations of schemes, each introducing 

novel construction methods and optimization techniques to enhance security and 

computational efficiency. Central to modern FHE schemes are lattice-based hard problems 

such as Learning with Errors (LWE) and Ring-Learning with Errors (RLWE), which provide 

robust resistance against quantum computing attacks. Additionally, advancements in 

optimizing the bootstrapping process and exploring hierarchical structures have further 

improved the practicality and performance of FHE. FHE applications span diverse fields, 

including cloud computing, artificial intelligence, and blockchain technology, demonstrating 

its immense potential in ensuring data privacy and facilitating secure computations. However, 

FHE still faces significant challenges related to computational efficiency, implementation 

complexity, and application scalability. Future research directions aim to enhance 

computational performance, broaden application scenarios, strengthen security measures, 

simplify implementation processes, and develop multi-modal and hybrid encryption schemes. 

Through a comprehensive review of FHE's development, current progress, applications, and 

challenges, this paper seeks to provide researchers and engineers with a thorough 

understanding of the FHE landscape, thereby promoting its continued advancement and 

practical utilization. 

Keywords: fully homomorphic encryption, data privacy protection, cloud computing, 

artificial intelligence, quantum security. 

1. Introduction 

With the swift progression of information technology and the extensive implementation of cloud 

computing, ensuring data security and safeguarding privacy have emerged as paramount global 

concerns. In this landscape, fully homomorphic encryption (FHE) has garnered significant research 

and application interest due to its unique capability to perform arbitrary computations directly on 

encrypted data. This means that operations can be carried out without the need to decrypt the data 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/135/2025.20959 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

39 



 

 

first, and the decrypted outcome will be identical to the result of the same operations performed on 

the original plaintext. Such functionality provides a strong foundation for protecting data privacy in 

scenarios like data outsourcing and cloud-based services. 

The idea of fully homomorphic encryption was initially introduced by Rivest and his colleagues 

in 1978, earning it the reputation of being the "holy grail" in cryptography [1]. Despite its potential, 

the practical application of FHE was hindered for many years by its considerable computational 

demands. This changed in 2009 when Craig Gentry developed the first practical FHE scheme using 

ideal lattice constructions [2]. Gentry’s groundbreaking work not only demonstrated a viable method 

for achieving FHE but also introduced the "bootstrapping" technique. This innovation effectively 

reduces ciphertext noise, allowing for unlimited homomorphic operations without compromising the 

integrity of the encrypted data. 

In recent times, there have been notable advancements in both the efficiency and security of fully 

homomorphic encryption, particularly in enhancing its resistance to attacks from quantum computers. 

Lattice-based problems, such as the Learning with Errors (LWE) and its ring-based variant Ring-

Learning with Errors (RLWE), have become the cornerstone of modern FHE schemes. Furthermore, 

researchers have made strides in improving the practicality and performance of FHE by refining the 

bootstrapping process and exploring hierarchical structures within FHE. To illustrate the evolution 

and key trends in this domain, several noteworthy research efforts can be highlighted. In 2011, 

Brakerski and Vaikuntanathan introduced FHE schemes grounded in the RLWE and standard LWE 

problem assumptions [3,4], marking the transition to the second generation of FHE development. The 

introduction of the GSW scheme by Gentry et al. [5] initiated the third generation of FHE schemes. 

The GSW approach utilized the approximate eigenvector method for homomorphic operations, 

thereby eliminating the need for key switching and modulus switching techniques. Moving forward, 

the fourth generation of FHE schemes is exemplified by the CKKS scheme proposed by Cheon and 

his team [6]. The CKKS scheme is tailored to support approximate arithmetic operations within the 

real number domain, enabling efficient homomorphic addition and multiplication by embedding the 

message space into the complex hyperplane and leveraging complex number properties. 

This article aims to provide a comprehensive overview of the evolution of fully homomorphic 

encryption, examining its current research advancements and potential future applications, 

particularly in areas such as cloud computing and machine learning. By comparing and analyzing 

several prominent FHE schemes, the article will identify the existing challenges faced by this field 

and explore possible directions for future development and enhancements. 

2. Overview of Relevant Technologies 

2.1. Lattice Definitions and Difficult Problems on Lattices 

2.1.1. Lattice Definitions 

In mathematics, a lattice refers to a set of points generated by a finite number of linearly independent 

basis vectors in the Euclidean space 𝑅𝑛. Specifically, given a set of basis vectors 𝐵 = {𝑏1, 𝑏2 , … , 𝑏𝑑} 

(where 𝑏𝑖 ∈ 𝑅𝑛), a lattice 𝐿(𝐵) is defined as the collection of all integer linear combinations of these 

basis vectors: 

𝐿(𝐵) = {∑ 𝑎𝑖𝑏𝑖  | 𝑎𝑖 ∈ 𝑍

𝑑

𝑖=1

} (1) 

Here, 𝑑 represents the dimension of the lattice. A lattice is a discrete subset characterized by 

periodicity and symmetry, and it is widely applied in fields such as number theory, algorithmic 

research, and cryptography. 
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2.1.2. Difficult Problems on Lattices 

The Shortest Vector Problem (SVP) seeks to find the non-zero vector of minimal length within a 

given lattice 𝐿. Specifically, let 𝜆1(𝐿) denote the length of the shortest non-zero vector in 𝐿 (the 

first successive minimum). The SVP can be formulated as: given 𝐿, find a vector 𝑣 ∈ 𝐿 that ||𝑣|| =

𝜆1(𝐿). 

The recent vector problem involves finding the vector in a lattice that is closest to a given target 

point 𝑡 ∈ 𝑅𝑛. The Closest Vector Problem (CVP) can be described as follows: given a lattice 𝐿 and 

a target point 𝑡, determine the vector 𝑣 ∈ 𝐿 that minimizes ||𝑣 − 𝑡||, which is to find the lattice point 

that best approximates the target. 

The LWE (Learning with Errors) problem involves, given an integer matrix 𝐴 ∈ ℤ𝑞
𝑚×𝑛  and a 

vector 𝑏 ∈ ℤ𝑞
𝑚, along with the equation 𝑏 = 𝐴𝑠 + 𝑒 𝑚𝑜𝑑 𝑞, finding the secret vector 𝑠 ∈ ℤ𝑞

𝑛, where 

e is a small noise vector following a certain error distribution. LWE is crucial for constructing lattice-

based security systems because it is considered computationally challenging. 

The RLWE problem is an extension of the LWE problem over polynomial rings. Given a ring 𝑅 

of dimension 𝑛 and an error distribution 𝜒, the RLWE problem requires distinguishing whether 

given samples are drawn from the following distributions: (1) Given a secret vector 𝑠 ∈ 𝑅𝑞, sample 

𝑎 ⟵ 𝑅𝑞 and error 𝑒 ⟵ 𝜒, and output (𝑏 = 𝑎 ∙ 𝑠 + 𝑒 𝑚𝑜𝑑 𝑞, 𝑎), or (2) the uniform distribution over 

𝑅𝑞
2. This can enhance computational efficiency in both space and time. 

These issues on lattices exhibit a high level of security in computational complexity, serving as a 

critical foundation for constructing quantum-safe cryptographic schemes. They have also become a 

focal point of cryptographic research in recent years. 

2.2. Definition of Fully Homomorphic Encryption 

Fully Homomorphic Encryption (FHE) is an encryption scheme that allows computations to be 

performed on ciphertexts without the need for decryption. Its fundamental structure consists of four 

core algorithms: the Key Generation Algorithm (KeyGen), the Encryption Algorithm (Enc), the 

Decryption Algorithm (Dec), and the Homomorphic Evaluation Algorithm (Eval). 

The key generation algorithm (KeyGen) generates a set of keys, including a public key 𝑝𝑘, a 

private key 𝑠𝑘 and an evaluation key 𝑒𝑣𝑘, given a security parameter 𝜆. The public key is used for 

encryption operations, the private key for decryption operations, and the evaluation key is specifically 

designed to support homomorphic computations. 

The encryption algorithm (Enc) utilizes the public key 𝑝𝑘 to encrypt the plaintext message 𝑚, 

generating the ciphertext 𝑐. This process ensures the confidentiality of data during transmission and 

processing. 

The homomorphic evaluation algorithm (Eval) utilizes the evaluation key 𝑒𝑣𝑘  to perform a 

specified function 𝑓 on a set of ciphertexts (𝑐𝑡1, 𝑐𝑡2, … , 𝑐𝑡𝑘), producing a new ciphertext 𝑐𝑡𝑓 . This 

algorithm enables direct computation on encrypted data without the need for decryption. 

The decryption algorithm (Dec) utilizes the private key 𝑠𝑘 to decrypt the ciphertext 𝑐𝑡𝑓 into the 

plaintext result 𝑓(𝑚1, 𝑚2, … , 𝑚𝑘). If the decryption process fails, it outputs a failure indicator. 

Through these algorithms, fully homomorphic encryption schemes enable the ability to perform 

complex computations on ciphertexts without decryption, ensuring data privacy while supporting a 

wide range of computational operations. 
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3. The Evolution of Fully Homomorphic Encryption Schemes 

3.1. The First Generation of Fully Homomorphic Encryption Schemes 

The first-generation FHE scheme was proposed by Gentry based on ideal lattices [2]. Its main 

construction process is as follows: First, a SHE scheme is built based on ideal lattices, with its security 

relying on the Closest Vector Problem (CVP). Next, the decryption circuit is compressed to make the 

scheme bootstrappable, with its security dependent on the SSSP assumption. Finally, the compressed 

decryption circuit achieves bootstrapping through homomorphic decryption, thereby realizing full 

homomorphism. 

3.1.1. Optimization of the First-Generation FHE Schemes 

Due to issues such as the imperfection of the key generation algorithm, insufficient proof of the 

security of the SSSP assumption, and low performance, many researchers have subsequently 

conducted improvement studies. Gentry proposed a new key generation algorithm and enhanced the 

security of the SSSP assumption through quantum worst-case/average-case reduction [7]. Stehlé and 

Steinfeld refined Gentry's key generation algorithm, conducted an in-depth analysis of the SSSP 

assumption, and introduced a probabilistic decryption algorithm to reduce computational complexity 

[8]. 

3.1.2. Advantages and Limitations of the First-Generation FHE Schemes 

Advantages: (1) Gentry's first-generation FHE scheme is the first to theoretically achieve fully 

homomorphic encryption, marking a significant advancement in the field of fully homomorphic 

encryption research. (2) The construction based on ideal lattices provides security guarantees against 

quantum computing. (3) It enables arbitrary homomorphic operations on encrypted data, laying the 

foundation for subsequent applications and research. 

Limitations: (1) The construction process is complex, making it difficult to comprehend and 

implement, particularly during key generation and decryption phases. (2) To achieve bootstrapping, 

it relies on the SSSP security assumption, which has not been thoroughly researched, thereby 

increasing potential security risks. (3) The ciphertext size and noise growth rate are relatively rapid, 

which restricts the scheme's practical applicability. 

3.2. The Second Generation of Fully Homomorphic Encryption Schemes 

The second generation of Fully Homomorphic Encryption (FHE) schemes was first constructed based 

on the Learning with Errors (LWE) problem assumption. In 2011, Brakerski and Vaikuntanathan 

introduced FHE schemes based on the Ring Learning with Errors (RLWE) problem and the standard 

LWE problem assumption. These contributions marked the entry of FHE schemes into the second 

generation of development, primarily encompassing the following two schemes: 

Scheme based on the RLWE problem [3]: This scheme does not require the generation of lattice 

bases during the key generation process, and its security is quantumly reduced to the worst-case 

hardness problem on ideal lattices. The subsequent methods for compressing the decryption circuit 

and implementing bootstrapping in the scheme still follow the approach of Gentry [2]. 

The scheme based on the standard LWE problem [4]: This scheme employs relinearization 

technology, with its security reduced to the hardness of the Shortest Vector Problem (SVP) in the 

worst-case scenario on arbitrary lattices. Prior to this, all lattice-based FHE scheme constructions 

relied on ideal lattices within various rings. However, this scheme no longer uses Gentry's decryption 

circuit compression method[2], instead proposing a novel Dimension-Modulus Reduction technique 
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that enables the scheme to be bootstrapped without introducing additional security assumptions. 

Additionally, it introduces a Modulus Switching technique to control the expansion of ciphertext 

noise, and the noise reduction process does not require the computational public key used in the first 

generation of FHE schemes, achieving simpler and more efficient noise control. 

3.2.1. Optimization of the Second-Generation FHE Schemes 

The BGV scheme, proposed by Brakerski, Gentry, and Vaikuntanathan [9], is based on the 

LWE/RLWE problem, with core technologies including key switching and modulus switching. Key 

switching relies on two sub-algorithms—BitDecomp and Powerof2—which achieve key switching 

through bit decomposition and power-of-two operations, ensuring that the dimension of the ciphertext 

does not excessively expand after homomorphic operations. The BFV scheme, introduced by Fan and 

Vercauteren [10], is based on the RLWE problem assumption. This scheme incorporates the Residue 

Number Systems (RNS) and the Chinese Remainder Theorem (CRT) representation methods, further 

optimizing the efficiency of homomorphic operations. 

3.2.2. Advantages and Limitations of the Second-Generation FHE Schemes 

Advantages: (1) Based on the LWE problem assumption, security is quantum-reduced to the worst-

case SVP problem, enhancing resistance against quantum attacks. (2) The second-generation scheme 

is the first to support Single Instruction Multiple Data (SIMD) operations, allowing batch processing 

of multiple plaintexts, thereby improving parallel computing capabilities. (3) Key switching and 

modulus exchange techniques significantly enhance the efficiency of homomorphic operations, 

reducing the rate of noise growth, making the scheme more efficient in practical applications. (4) It 

no longer directly relies on complex ideal lattice constructions, simplifying the implementation of 

key generation and decryption circuits, thereby improving the practicality and comprehensibility of 

the scheme. 

Limitations: (1) The key switching technique relies on two submodules, BitDecomp and Powerof2, 

leading to an expansion in key size, which increases storage requirements and management 

complexity. (2) The bootstrapping implementation necessitates that the underlying lattice problem 

remains hard even when the approximation factor grows super-polynomially, resulting in a stronger 

security assumption and higher potential risks. (3) The realization of the key switching technique 

depends on multiple sub-algorithms, adding to the scheme's complexity and implementation difficulty, 

which may impact overall performance and reliability. 

3.3. The Third Generation of Fully Homomorphic Encryption Schemes 

The third generation of FHE schemes began with the GSW scheme proposed by Gentry et al. [5]. The 

GSW scheme introduced a novel approach for performing homomorphic operations by utilizing the 

approximate eigenvector method, thereby eliminating the need for key switching and modulus 

switching techniques. 

3.3.1. Optimization of the Third-Generation FHE Schemes 

Brakerski and Vaikunthanathan demonstrated that the GSW scheme could achieve Fully 

Homomorphic Encryption (FHE) with shorter parameters and improved the bootstrapping procedure 

in the GSW scheme by leveraging Barrington's theorem [11,12], enabling homomorphic operations 

through branching programs. Alperin-Sheriff and Peikert pointed out that the aforementioned method 

was highly inefficient[13]. They efficiently constructed decryption circuits with smaller depth by 

transforming the decryption circuit into an arithmetic circuit, resulting in a bootstrapping method with 
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superior performance and slower error growth. Additionally, they utilized a gadget matrix to create a 

simpler variant of GSW, further enhancing bootstrapping efficiency. Ducas and Micciancio 

effectively instantiated the bootstrapping method proposed by Alperin-Sheriff and Peikert in the 

FHEW scheme, reducing bootstrapping time to under one second [14]. By introducing Programmable 

Bootstrapping (PBS) technology, the FHEW scheme achieved homomorphic computation of NAND 

operations on standard LWE ciphertexts during the bootstrapping process, significantly improving 

bootstrapping efficiency. 

3.3.2. Advantages and Limitations of the Third-Generation FHE Schemes 

Advantages: (1) The third-generation FHE scheme achieves homomorphic operations through matrix 

addition and multiplication, avoiding the expansion of ciphertext dimensions and eliminating the need 

for additional techniques to control dimension growth. (2) By utilizing techniques such as gadget 

matrices, it effectively manages noise growth within the ciphertext without requiring modulus 

switching, thereby simplifying the scheme design. (3) The third-generation FHE scheme significantly 

enhances the efficiency of the bootstrapping process through various optimization methods (AP and 

GINX bootstrapping), drastically reducing bootstrapping time. (4) It eliminates the need for public 

key computation during homomorphic operations, streamlining the process and improving overall 

efficiency. 

Limitations: (1) The third-generation FHE schemes currently do not support Single Instruction 

Multiple Data (SIMD) homomorphic operations, which restricts their application in certain parallel 

computing scenarios. (2) Although the security assumptions based on (R)LWE remain robust, the 

third-generation FHE schemes have somewhat weakened their reliance on these security assumptions 

compared to the second generation, with the approximation factor of the hard problem being only a 

polynomial in the dimension n. (3) Similar to the second-generation FHE schemes, the third-

generation FHE schemes still require bootstrapping to achieve full homomorphism, which to some 

extent limits their flexibility and broad applicability. 

3.4. The Fourth Generation of Fully Homomorphic Encryption Schemes 

In the evolution of Fully Homomorphic Encryption (FHE), the fourth-generation schemes represent 

encryption methods based on approximate computation. These schemes achieve higher 

computational efficiency compared to previous generations by performing approximate operations in 

the real or complex number fields. A typical example of the fourth-generation FHE schemes is the 

CKKS scheme. Similar to the second-generation schemes, the fourth-generation schemes also rely on 

the security of lattice problems (such as RLWE), but their primary distinction lies in the adoption of 

approximate arithmetic operations, which significantly enhance computational speed, particularly in 

application scenarios requiring the processing of floating-point numbers. The CKKS scheme, 

proposed by Cheon et al. [6], is designed to support approximate arithmetic operations, enabling 

homomorphic addition and multiplication in the real number field. By embedding the message space 

into a complex hyperplane and leveraging the properties of complex numbers, the CKKS scheme 

achieves efficient homomorphic operations. 

3.4.1. Optimization of the Fourth-Generation FHE Schemes 

Boemer et al. optimized the operational efficiency of scalar encoding and ciphertext-plaintext 

addition and multiplication through a complex packing-based approach[15]. This method leverages 

the structural properties of complex numbers to achieve more efficient data representation and 

processing. The CHIMERA scheme proposed by Boura et al. integrates multiple RLWE-based FHE 

schemes[16], including CKKS, TFHE, and BFV. By constructing a common plaintext space, 
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CHIMERA enables efficient switching between different schemes. Specifically, CHIMERA utilizes 

bootstrapping techniques to allow ciphertexts to be converted between TFHE and BFV, as well as 

between CKKS and BFV, with BFV serving as an intermediary for conversions between TFHE and 

CKKS. This innovation significantly expands the application scope of fully homomorphic encryption, 

enabling it to better adapt to diverse computational needs. 

3.4.2. Advantages and Limitations of the Fourth-Generation FHE Schemes 

Advantages: (1) The fourth-generation scheme significantly enhances the speed of homomorphic 

operations through approximate computation, making it particularly suitable for handling floating-

point numbers and complex arithmetic operations. (2) The CKKS scheme can embed messages into 

the complex number domain, supporting efficient floating-point operations in a homomorphic 

environment, which is applicable to fields such as machine learning and data analysis. (3) Through 

various optimization techniques, the fourth-generation scheme achieves a notable improvement in 

computational efficiency while maintaining security. 

Limitations: (1) Due to the use of approximate calculations, the fourth-generation scheme 

introduces errors during computation, which may affect the accuracy of the results, especially in 

applications requiring high precision, where caution is advised. (2) The CKKS scheme poses a risk 

of key extraction in certain application scenarios, particularly in situations where partial plaintext 

results need to be shared. (3) Although bootstrapping techniques enhance the functionality of the 

scheme, they also increase implementation complexity and computational overhead, especially when 

dealing with dense keys, where there remains a trade-off between the probability of bootstrapping 

failure and precision. 

4. Applications of Fully Homomorphic Encryption 

4.1. Algorithm Library 

Helib[17], developed by IBM, is an open-source homomorphic encryption library written in C++. It 

can be installed and deployed on multiple operating system platforms, including Windows, macOS, 

Ubuntu, and CentOS. The library relies on the NTL number theory library and the GMP multi-

precision arithmetic library at its core, supporting the implementation of both BGV and CKKS 

homomorphic encryption schemes. Additionally, Helib includes various optimization codes to 

enhance the efficiency of algorithms, such as Smart-Vercauteren's ciphertext packing technique and 

Gentry-Halevi-Smart's optimization algorithms. It supports basic operation instructions like "set," 

"add," "multiply," and "shift." In 2018, IBM released a new version of the Helib library, which 

optimized the re-linearization algorithm, improving its efficiency by 15 to 75 times. 

Microsoft SEAL[18], developed by Microsoft's Cryptography and Privacy Research team, is an 

open-source homomorphic encryption library written in C++. It is capable of running in various 

environments and supports three homomorphic encryption schemes: BFV, BGV, and CKKS. When 

using the SEAL library, users need to understand many specific concepts of homomorphic encryption. 

The library can perform homomorphic addition and multiplication operations on ciphertexts but does 

not support operations such as comparison and sorting of ciphertexts. 

PALISADE is an open-source project that offers efficient implementations of lattice-based 

cryptographic constructions and the latest homomorphic encryption schemes. Focused on usability, 

PALISADE supports the BGV, BFV, CKKS, and FHEW schemes, along with their variants, 

including corresponding bootstrapping algorithms. Additionally, PALISADE provides a variety of 

cryptographic schemes such as post-quantum public-key encryption, proxy re-encryption, multi-party 

computation, threshold homomorphic encryption, identity-based encryption, attribute-based 
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encryption, and digital signatures. Currently, the primary development team of PALISADE has 

integrated the project into its successor, the OpenFHE library [19]. 

4.2. Typical Application Scenarios 

4.2.1. The Application of FHE in Artificial Intelligence 

The advancement of artificial intelligence relies heavily on vast amounts of data as its "fuel." How to 

fully unleash the potential of AI while ensuring data security and privacy has become a critical issue. 

For instance, different industries, departments, or even various business lines within an organization 

often form data silos due to concerns over data security or privacy. This results in reliance on limited 

or single data sources for independent training, thereby affecting the construction and optimization 

of models. The introduction of Fully Homomorphic Encryption (FHE) technology can effectively 

mitigate this problem. In multi-party machine learning processes, participants can encrypt both 

foundational data and models, ensuring that data remains in ciphertext form during learning or other 

processing operations, with the results still encrypted. This FHE-based privacy-preserving machine 

learning approach enables collaborative training and optimization among multiple parties without 

exposing the original data. Intel has conducted extensive work in this field. In December 2018, in 

collaboration with Microsoft, they released the open-source HE-transformer based on the SEAL 

algorithm library. This tool supports secure operations on sensitive data within AI systems and can 

be integrated into neural network implementations in open-source frameworks such as Google's 

TensorFlow and Facebook's PyTorch. It also serves as the homomorphic encryption backend for 

Intel's neural network compiler, nGraph. 

4.2.2. The Application of FHE in Blockchain 

In blockchain technology, the execution of smart contracts typically requires the disclosure of all 

input parameters to allow other nodes in the network to verify the correctness of the contract execution. 

However, this approach fails to protect the privacy of the contract caller, especially in scenarios 

involving sensitive information, such as electronic voting, multi-party auctions, and healthcare 

contracts, where data providers may hesitate to submit their information. By introducing Fully 

Homomorphic Encryption (FHE) technology, data can be encrypted using FHE algorithm libraries 

before being uploaded to the blockchain, and the encrypted data is then stored on the blockchain. 

Subsequently, smart contracts process the data in its encrypted form through homomorphic operations, 

ensuring that the results of the contract execution remain encrypted[20]. Finally, these encrypted 

results are returned to the business layer and decrypted using the FHE algorithm library, thereby 

safeguarding the privacy of contract information and the security of the data. This method not only 

protects data privacy but also expands the application scope of blockchain smart contracts, enabling 

them to function effectively in more scenarios that require privacy protection. 

5. Challenges and Prospects 

5.1. Enhance Computational Efficiency 

Current Fully Homomorphic Encryption (FHE) schemes still have significant room for improvement 

in terms of computational efficiency and resource consumption. Future research should focus on 

further optimizing homomorphic operation algorithms, reducing computational complexity, and 

minimizing the time overhead for encryption and decryption. Additionally, hardware acceleration 

technologies, such as implementations based on GPUs or specialized cryptographic chips, are 

expected to significantly enhance the practical application performance of FHE. 
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5.2. Expand Application Scenarios 

As FHE technology continues to mature, its application scenarios will gradually expand into more 

fields. For instance, medical data analysis, financial privacy protection, and IoT device security are 

all significant potential areas for FHE. Designing more flexible and diverse FHE solutions tailored to 

the needs of different application scenarios will further promote its widespread practical use. 

5.3. Enhance Security 

Although lattice-base FHE schemes offer significant advantages in resisting quantum attacks, the 

security of FHE schemes still requires ongoing attention and enhancement as computational power 

increases and cryptanalysis techniques evolve. Future research must further refine security proofs, 

explore more robust security assumptions, and ensure that FHE maintains sufficient protective 

capabilities against emerging attack methods. 

5.4. Simplify the Implementation and Standardize. 

Currently, FHE schemes are relatively complex to implement, lacking unified standards and user-

friendly development tools, which hinders their widespread adoption in practical applications. In the 

future, efforts should focus on developing more accessible programming interfaces, standardized 

protocols, and frameworks to lower the barrier to entry for FHE technology, thereby promoting its 

broader application and integration across various fields. 

5.5. Multimodal and Hybrid Encryption Schemes 

In practical applications, a single encryption scheme may struggle to meet the complex and diverse 

security requirements. Future research could explore multimodal encryption methods, integrating 

Fully Homomorphic Encryption (FHE) with other encryption technologies such as Partial 

Homomorphic Encryption and Attribute-Based Encryption. This approach aims to construct more 

flexible and efficient hybrid encryption schemes, addressing data security needs across various 

scenarios. 

6. Conclusion 

Fully FHE, recognized as a cutting-edge advancement in cryptography, has achieved substantial 

progress in both theoretical research and practical applications in recent years. This article provides 

a systematic review of FHE's development history, tracing its evolution from the first generation to 

the fourth generation of FHE schemes. Each generation has introduced significant innovations in 

construction methods and optimization techniques, enhancing both security and computational 

efficiency. The initial generations laid the groundwork with foundational concepts, while later 

generations incorporated lattice-based problems like Learning with Errors (LWE) and Ring-Learning 

with Errors (RLWE) to bolster resistance against quantum computing attacks. Detailed analyses are 

presented on the architectural advancements, including bootstrapping methods and noise 

management strategies, which have addressed previous limitations and improved the practicality of 

FHE. At the application level, FHE has shown broad potential across various fields such as algorithm 

libraries, artificial intelligence, and blockchain technology. In algorithm libraries, FHE enables secure 

computations without exposing sensitive data, enhancing privacy in software applications. In 

artificial intelligence, FHE facilitates privacy-preserving data processing and model training, which 

are crucial for handling confidential information. Blockchain applications benefit from FHE by 

ensuring transaction integrity and confidentiality, thereby strengthening the security framework of 

decentralized systems. Despite these advancements, FHE faces significant challenges in practical 
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deployment. Computational efficiency and high resource consumption remain major obstacles that 

hinder its widespread adoption. Additionally, the complexity of implementing FHE schemes 

complicates their integration into existing systems. Addressing these challenges requires ongoing 

research focused on optimizing homomorphic operation algorithms to maintain security while 

reducing computational complexity. Future directions include exploring parallel processing, 

hardware acceleration, and more efficient encoding techniques to enhance the performance and 

scalability of FHE. By providing a comprehensive overview of FHE's evolution, applications, and 

current challenges, this paper aims to equip researchers and practitioners with the knowledge needed 

to advance and implement FHE effectively in various domains. 
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