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Abstract: As the demand for encryption and information security increases, the concept of 

neural networks in deep learning is gradually used in the field of image encryption, and the 

influence of neural networks on the field of image encryption is gradually deepening. The 

current mainstream neural network image encryption schemes are categorized into pixel 

disruption and chaotic systems. This paper provides a basic introduction to the four network 

models of chaotic neural networks, convolutional neural networks, cellular neural networks, 

and generative adversarial networks for image encryption, an analysis of the algorithmic 

framework, and an analysis of the encrypted image. It is found that all four neural network 

models are affected by the parameters of the model as well as the size, if the neural network 

encrypted image is highly resistant to noise, at the same time the distortion of the image will 

be larger and the visual entropy of the image will be increased accordingly. If a model is 

sensitive to the initial value, then the model has a relatively large key space, low correlation 

of neighboring pixels, good encryption, and is more difficult to crack. 
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1. Introduction 

In the rapidly evolving digital environment, the need for robust and secure data encryption technology 

has become critical. As technology continues to advance and adversaries become more 

computationally powerful, traditional encryption methods face increasing challenges. This has 

prompted researchers and practitioners to begin exploring alternative encryption methods. 

As a highly nonlinear system, neural networks have chaotic complexities within them[1]. 

Moreover, the inherent nonlinear properties of neural networks, such as unpredictability, randomness 

and sensitivity to initial values, make them ideal candidates for the development of new encryption 

algorithms[2]. At the same time, the adaptive and highly fault-tolerant properties possessed by neural 

networks also facilitate the implementation of cryptography. 

The intersection of neural networks and cryptography is one of the key developments in the field 

of information security. This convergence began in the early 1990s when researchers first explored 

the possibility of using neural networks for cryptographic purposes. Although research in neural 

networks and cryptography hit a low point around 1995, in 2002, German scientists Kinzel and 

Kanter[3,4] implemented a neural network-based public channel key negotiation process using 

mutual learning synchronization, making the birth of narrow-sense neural cryptography. Kanter and 
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Kinzel's pioneering work on synchronized key exchange in neural networks marks an important 

milestone in this journey, demonstrating that neural networks can provide new approaches to 

cryptographic challenges. Subsequently, in recent years there has been a steady stream of completely 

new neural network models that have been involved in the convergence of the field of cryptography. 

Currently, there are various neural network models such as Hopfield neural network[5-7], cellular 

neural network[8-12], convolutional neural network[13,14], adversarial neural network[15,16], etc., 

which have achieved a large number of results and many iterations in the field of cryptography such 

as image encryption and cryptographic algorithms. 

Despite the growing interest in the intersection of neural networks and cryptography, reviews 

synthesizing the application and differential analysis of different neural network models in 

cryptography are still scarce. While several reviews have examined specific aspects of neural 

cryptography or specific neural network architectures, there is a clear gap in the literature when it 

comes to analyzing the differences between different neural network models.  

The aim of this paper is to analyze the current state of research and applications in the field of 

encryption based on different neural network models. By examining the strengths, weaknesses and 

uniqueness of various neural network architectures, this paper will shed light on their application in 

image encryption and the associated security implications. This paper will begin with an introduction 

to the fundamentals of neural networks, which will provide a solid foundation for understanding the 

mechanisms of encryption using neural networks. Then, this paper will explore specific neural 

network models for encryption, such as chaotic neural networks, cellular neural networks, 

convolutional neural networks, and adversarial neural networks. For each neural network model, this 

paper will highlight the unique advantages and potential drawbacks of each approach, and the analysis 

includes a discussion of the key factors that determine the security and performance of these 

encryption schemes. 

By synthesizing the relevant literature and providing a structured analysis, this review aims to 

provide a valuable resource for researchers, developers, and policymakers interested in exploring the 

intersection of neural networks and crypto. The insights gained from this review can inform the design 

of more secure and efficient cryptographic solutions and provide guidance for future research 

directions in this rapidly evolving field. 

2. Image Encryption Model 

The research in this paper focuses on four mainstream neural network image encryption models: 

chaotic neural networks, convolutional neural networks, cellular neural networks, and generative 

adversarial networks. 

2.1. Chaotic Neural Network (CNN) 

Chaotic neural network combines the characteristics of chaos theory and artificial neural network, its 

chaotic characteristics can generate highly complex and unpredictable pseudo-random sequences, 

suitable for image encryption in the key generation and perturbation operation, which is most typical 

of Hopfield neural network, the current mainstream classification: 

(1) Chaotic neural network based on weights perturbation: utilizing chaotic sequences to 

dynamically adjust the neural network weights, making the network state uncertain. 

(2) Chaotic neural network based on input perturbation: encryption of images by chaotic mapping 

of input data. 

(3) Hybrid chaotic neural networks: deep fusion of chaotic mapping with neural network models, 

e.g., embedding chaotic perturbations in convolutional layers. 

A typical encryption algorithm framework is shown in Figure 1. 
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Figure 1: Typical chaotic neural network encryption algorithm (Picture credit: Original) 

The initial chaotic system can be based on different chaotic systems to generate initial chaotic 

sequences, combined with image features to generate dynamic keys, using chaotic sequences to 

displace the ranks of the image pixels, and finally the chaotic sequences with the original pixel values 

for element-by-element arithmetic. 

2.2. Cellular Neural Networks (CNN) 

Cellular neural network is a locally interconnected neural network that can process signals in real 

time and efficiently, and is suitable for processing image data. The current mainstream classification: 

(1) Continuous-Time Cellular Neural Networks: simulating a continuous dynamic system and uses 

differential equations to describe the evolution of the network state. It is suitable for dynamic 

encryption processes, such as encryption of real-time image streams, utilizing continuous dynamic 

characteristics to achieve high complexity encryption operations. 

(2) Discrete-Time Cellular Neural Networks: Running at discrete time steps, differential equations 

are used to describe the update of the network state. It is suitable for encryption of static digital images, 

with the advantages of efficient computation and simple implementation. 

(3) Adaptive Cellular Neural Networks: Network parameters (e.g., template parameters) are 

dynamically adjusted based on the input image or external key to enhance the randomness and 

security of encryption. 

A typical encryption algorithm framework is shown in Figure 2. 

 

Figure 2: Typical cellular neural network encryption algorithm (Picture credit: Original) 
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Initially define the cellular network topology and connection templates, take the image pixel values 

as initial inputs, and iteratively update the cell state according to the CNN dynamic equations. 

2.3. Convolutional Neural Network (CNN) 

Convolutional neural networks are able to automatically learn and extract features from images 

through their variable parameter convolution, pooling, and fully-connected layers, focusing primarily 

on nonlinear mapping and feature extraction capabilities to enhance the complexity and security of 

cryptographic algorithms. Current mainstream classification: 

(1) Single-Layer Convolution Encryption: Basic cryptographic operations on images, such as 

permutation and diffusion, are implemented through a single convolutional layer. 

(2) Multi-Layer Convolution Encryption: The strength and security of image encryption is 

enhanced by multilayer convolutional operations utilizing the multilevel feature extraction capability 

of deep CNNs. 

(3) Hybrid Convolution Encryption: Combining convolutional neural networks with other 

cryptographic techniques (e.g., chaotic mapping, traditional encryption algorithms) improves the 

overall security and complexity of cryptographic systems. 

A typical encryption algorithm framework is shown in Figure 3. 

 

Figure 3: Typical convolutional neural network encryption algorithm (Picture credit: Original) 

Construct a convolutional neural system, set the number of convolutional layers, pooling layer and 

activation function, use the convolutional layer to extract image features and discretize the image, 

introduce activation function and chaotic mapping for nonlinear encryption of image features. 

2.4. Generative Adversarial Networks (GAN) 

Generative Adversarial Networks (GANs) provide innovative solutions for image security by being 

able to generate highly complex and indistinguishable cryptographic patterns through the adversarial 

game mechanism of generators and discriminators. By learning the data distribution and generating 

highly random and unpredictable cryptographic mappings, GAN can significantly improve the 

security of traditional cryptographic algorithms. Especially in areas such as adversarial attacks and 

image reconstruction, GAN shows unique advantages and potential. Current mainstream 

classification: 

(1) Adversarial Perturbation Encryption GAN: The generator network generates specific 

perturbation vectors which are confusing and unpredictable. The generated perturbation vectors are 

superimposed on the original image to form the encrypted image. 
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(2) Distribution Transformation GAN: The generator maps the original image to the target 

ciphertext distribution, and the discriminator distinguishes the mapped ciphertext from the true 

ciphertext. 

(3) Direct Ciphertext Generation GAN: The generator network directly outputs the encrypted 

image, and the discriminator network is responsible for distinguishing the ciphertext from the original 

image. Through the adversarial training of the generator and the discriminator, a high quality and 

difficult to restore ciphertext image is generated. 

A typical encryption algorithm framework is shown in Figure 4. 

 

Figure 4: Typical generative neural network encryption algorithm (Picture credit: Original) 

Input image 𝑥 and random noise 𝑧, generator 𝐺(𝑧, 𝑥) generates pseudo-ciphertext, discriminator 

D(x) evaluates whether the input image is real data or pseudo-ciphertext, by alternately optimizing 

the generator and the discriminator, the pseudo-ciphertext generated by the generator approximates 

the ciphertext that cannot be distinguished by the discriminator, and encrypts the input image using 

the trained generator. 

3. Analysis of Variances 

In this paper, we compare four neural network encryption algorithms from two aspects, one in terms 

of cryptographic primitives and the other in terms of encrypted image quality. Cryptographic 

primitive comparison is mainly based on four aspects: key space size, key sensitivity and neighboring 

pixel correlation. Cryptographic image quality comparison is mainly based on three aspects: noise 

resistance of cryptographic images, visual entropy of cryptographic images, and image distortion[17]. 

3.1. Key Space Analysis 

3.1.1. Chaotic Neural Networks 

Chaotic neural networks generate keys through chaotic mapping, and commonly used chaotic systems 

such as Logistic mapping, Henon mapping, and Lorenz system. Due to the special characteristics of 

chaotic mapping, small changes in the initial conditions and parameters can lead to drastic changes 

in the trajectory of the system, and this property makes chaotic neural networks have a large key 

space. 
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Suppose an 𝑁  dimensional chaotic system is used, in which the initial conditions and control 

parameters of each dimension can be adjusted independently. Then the key space of the whole chaotic 

system 𝐾 can be expressed as: 

 𝐾 = ∏ (
𝑋

max
−𝑋

min

Δ𝑋
)

𝑁

𝑖=1

× (
𝛼

max
−𝛼

min

Δ𝛼
) (1) 

where 𝑋min and 𝑋max are the minimum and maximum values of the initial condition, respectively, and 

Δ𝑋 is the step size of the initial condition; 𝛼min and 𝛼max are the minimum and maximum values of 

the control parameter and maximum values of the control parameter, and Δ𝛼 is the step size of the 

control parameter. Due to the high sensitivity of the parameters in chaotic systems, even very small 

step sizes of Δ𝑋 and Δ𝛼 can significantly increase the size of the key space. In addition, literature 

studies have shown that the key space of a chaotic system is not only related to the dimension of the 

system, but also closely related to the choice of parameters and the specific realization of the system. 

3.1.2. Cellular Neural Network 

Cellular Neural Networks key in image encryption depends on initial state, connection weight matrix 

and input weight matrix. The size of the key space is closely related to the structural complexity of 

the network (e.g., number of cells, range of connections) and the range of parameters of the weight 

matrix. The key space consists of an initial state 𝐾𝑆, a connection weight matrix 𝐾𝑊, an output weight 

matrix 𝐾𝑈. 

Suppose there are 𝑁 cells in the network, each cell can take 𝑀 discrete values, each connection 

weight 𝑤𝑖𝑗  can take 𝑃 different values, each cell is connected to 𝐶 neighbors, the output weight 𝑢𝑖𝑘  

can take Q different values, and each cell receives 𝐷 inputs. Combining the above three components, 

the overall key space 𝐾 of the cellular neural network can be expressed as: 

 𝐾 = 𝐾𝑆 × 𝐾𝑊 × 𝐾𝑈 = 𝑀𝑁 × 𝑃𝑁×𝐶 × 𝑄𝑁×𝐷 (2) 

Cellular neural network constructs a large key space through multi-dimensional parameters and 

complex network structure, which significantly improves the security of image encryption system. 

3.1.3. Convolutional Neural Network 

The encryption mechanism of a convolutional neural network usually relies on the weights 

(convolutional kernels and biases) of the network. These weights are determined by the training data, 

so the size of the key space depends on the size of the network, the number of layers, the number of 

convolutional kernels, and the size of each convolutional kernel. 

Assuming that a convolutional neural network has 𝐿 layers with 𝐾 convolutional kernels per layer, 

each of size 𝑚 × 𝑛, the size of the weight matrix is 𝑊 = 𝐿 × 𝐾 × 𝑚 × 𝑛 and the key space can be 

represented as: 

 𝑆 = 𝑑𝐿×𝐾×𝑚×𝑛 (3) 

The weights of a CNN are obtained through a training process and are not randomly generated. In 

practice, weight values usually follow a specific distribution, which further reduces the effective key 

space. Compared to chaotic neural networks, their key space is relatively small and may be less 

resistant to attacks. 

3.1.4. Generative Adversarial Network 

The size of the key space for generating the adversarial network is related to the dimensionality of 

the random noise; the higher the dimensionality of the noise, the larger the key space. 
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Assuming that the GAN employs a 𝐷 dimensional random noise vector 𝐳 = [𝑧1, 𝑧2, … , 𝑧𝐷] and 

each dimension 𝑧𝑖 can take 𝑉 discrete values, then the key space 𝐾 of the whole noise vector can be 

expressed as: 

 𝐾 = 𝑉𝐷 (4) 

The key space of a GAN depends not only on the high dimensionality of the random noise vectors, 

but also on the complexity of the generator network structure. In addition, GAN optimizes the 

generator and discriminator through the adversarial training mechanism, which makes the generated 

encrypted images have higher randomness and complexity. 

3.2. Key Sensitivity Analysis 

3.2.1. Chaotic Neural Network 

Chaotic neural networks are very sensitive to initial conditions and parameters of chaotic systems. 

Even small changes in the key can lead to drastic changes in the encryption results. This property 

makes chaotic neural networks highly secure. 

Assuming an iterative process 𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝜃) using a chaotic mapping, if Δ𝑥0 is a change in the 

initial value, the error growth after 𝑁 iterations can be expressed as: 

 Δ𝑥𝑁 = 𝑓(𝑥𝑁−1, 𝜃) − 𝑓(𝑥𝑁−1 + Δ𝑥0, 𝜃) (5) 

Initial small deviations are rapidly amplified after many iterations, leading to significant 

differences in the final encryption results. 

3.2.2. Cellular Neural Network 

Cellular neural networks exhibit high sensitivity to small changes in the initial state and weight matrix, 

a property that is amplified by the dynamic evolutionary process of the network. 

Assuming that the input image is II, the initial state of the network is 𝐒(0), the connection weight 

matrix is 𝐖, and the input weight matrix is 𝐔, the evolution of the cellular neural network can be 

described as follows: 

 𝑆(𝑡 + 1) = 𝑓(𝐖 ⋅ 𝐒(𝑡) + 𝐔 ⋅ 𝐼 + 𝐁) (6) 

𝑓 is the activation function. Any small perturbation of the initial conditions or parameters Δ𝐒(0), 

Δ𝐖, Δ𝐔 will be amplified in subsequent iterations. 

3.2.3. Convolutional Neural Network 

Convolutional Neural Networks have relatively low key sensitivity in image encryption. Even a small 

change in the convolutional kernel does not lead to significant changes in the encrypted image. This 

property is mainly due to the stable weights of CNNs obtained through large-scale data training, 

which makes them less sensitive to key changes than chaotic neural networks. 

Assume that the convolution kernel is 𝑊, the input image is 𝐼, and the convolution operation is 

𝑂 = 𝑊 ∗ 𝐼. If X, the change in the output is:  

 𝑂′ = (𝑊 + Δ𝑊) ∗ 𝐼 (7) 

Due to the training optimization property of convolutional neural networks, small changes in the 

weights do not significantly affect the final encryption result 
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3.2.4. Generative Adversarial Network 

The key sensitivity of Generative Adversarial Networks in image encryption mainly depends on the 

dimensionality of its input random noise vectors and the degree of response of the generator to the 

noisy inputs. 

The key is usually represented as an input random noise vector 𝑧, which the generator G maps it 

to the encrypted image 𝐺(𝑧). Assuming a small change Δ𝑧 in the noise vector, the change in the 

output image is Δ𝐺 and Δ𝐺 can be expressed as: 

 Δ𝐺 = 𝐺(𝐳 + Δ𝐳) − 𝐺(𝐳) ≈ ∇𝐳𝐺(𝐳) ⋅ Δ𝐳 (8) 

where ∇𝐳𝐺(𝐳) ⋅ Δ𝐳 denotes the gradient of the generator with respect to the noise vector 𝐳. If the 

gradient change of the generator is small, i.e., ∇𝐳𝐺(𝐳) low, it means that a small change in the noise 

vector will result in a small change in the output image as well. 

3.3. Analysis of Neighboring pixel correlation 

3.3.1. Chaotic Neural Network 

Chaotic neural network can effectively break the correlation between neighboring pixels in an image 

through chaotic perturbation and pixel disruption operations. In the process of image encryption, the 

change of pixel values is controlled by chaotic mapping, the relationship between neighboring pixels 

in the original image is disrupted, and the pixel values in the cipher image are basically uncorrelated. 

Assuming that the original image pixel matrix is 𝐼 = [𝐼1, 𝐼2, … , 𝐼𝑛] , and the encrypted image after 

chaotic discretization is 𝐼′ = [𝐼1
′ , 𝐼2

′ , … , 𝐼𝑛
′ ] , the correlation between neighboring pixels is extremely 

low. The correlation between pixels is extremely low, corr(𝐼𝑖, 𝐼𝑗) is almost zero for neighboring pixels  

𝑖 and 𝑗. 

3.3.2. Cellular Neural Network 

The cellular neural network effectively destroys the correlation of neighboring pixels in the original 

image through a dynamic mechanism of local interaction and feedback between cells. Through the 

complex dynamic evolution, the local pixel distribution of the original image is nonlinearly perturbed, 

which makes the correlation between neighboring pixels decrease dramatically. 

3.3.3. Convolutional Neural Network 

Convolutional Neural Networks are relatively weak in pixel correlation destruction in image 

encryption. CNNs mainly rely on their convolutional layers to extract image features. The training 

optimization process of CNNs makes the network weights relatively stable and does not significantly 

change the correlation of neighboring pixels in encrypted images. 

3.3.4. Generative Adversarial Network 

The performance of generative adversarial networks in image encryption is between chaotic neural 

networks and convolutional neural networks. The depth structure of the generator and the nonlinear 

activation function help to break the correlation between neighboring pixels in the original image. 

However, GANs have limited sensitivity to random noise. When the generator response to the noisy 

input is low, it may not be enough to significantly change the pixel correlation of the encrypted image. 
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3.4. Analysis of Noise Resistance 

3.4.1. Chaotic Neural Network 

The chaotic system effectively suppresses the propagation of external noise in the encrypted image. 

This is mainly attributed to the application of chaotic mapping in the encryption process, the process 

of which can randomize the pixel values of the image to a certain extent, thus making the encrypted 

image highly resistant to noise. 

Suppose that the encrypted image 𝐼′ is obtained by processing the original image 𝐼  and the 

encryption parameter 𝐾 by the chaotic mapping function 𝑓  , i.e: 𝐼′ = 𝑓(𝐼, 𝐾) . Assume that the 

response of the chaotic mapping function ff to small perturbations Δ𝐼 and Δ𝐾 of the input image 𝐼 

and encryption parameter 𝐾 is as follows: 

 Δ𝐼′ = 𝑓(𝐼 + Δ𝐼, 𝐾 + Δ𝐾) − 𝑓(𝐼, 𝐾) (9) 

Due to the high sensitivity of chaotic systems, the derivatives of the chaotic mapping functions 
𝜕𝑓

𝜕𝐼
 

and 
𝜕𝑓

𝜕𝐾
 show exponential growth under certain conditions, i.e: 

 Δ𝐼′ ≈ (
𝜕𝑓

𝜕𝐼
Δ𝐼 +

𝜕𝑓

𝜕𝐾
Δ𝐾)𝑒𝜆𝑡 (10) 

As the number of iterations increases, small perturbations will be magnified exponentially, 

resulting in significant changes in the overall state of the cipher image. 

3.4.2. Cellular Neural Network 

Cellular neural networks achieve complex transformations of input images through their local 

receptive fields and dynamic evolutionary mechanisms, especially in destroying the correlation of 

neighboring pixels in an image and enhancing the noise resistance of encryption systems, 

demonstrating significant advantages. 

Assuming that the original image 𝐼 and the noise 𝜂 are encrypted by a cellular neural network, the 

whole encryption process can be expressed as follows: 𝐼′ = 𝐶𝑁𝑁(𝐼, 𝜂; Θ). Θ is the set of network 

parameters, including the connection weight matrix 𝐖 and the input weight matrix 𝐔. Combined with 

equation 6, the state update for each iteration can be described as: 

 𝛥𝑆(𝑡 + 1) = 𝑓 ′(𝐖 ⋅ 𝐒(𝑡) + 𝐔 ⋅ 𝐼 + 𝐁) ⋅ (𝐖 ⋅ Δ𝐒(𝑡) + Δ𝐖 ⋅ 𝐒(𝑡) + Δ𝐔 ⋅ 𝐼) (11) 

Cellular neural networks can effectively break the correlation between neighboring pixels in an 

image through chaotic perturbation and pixel disambiguation operations, which significantly 

improves the noise immunity and overall security of the encryption system. 

3.4.3. Convolutional Neural Network. 

Convolutional neural networks may be more affected by noise during image encryption, especially 

in shallow layers of convolutional neural networks. Because the convolutional operation is based on 

local perception, it may not be as effective against the expansion of noise as the chaotic neural 

network. 

If the input image contains noise 𝜂, the encrypted image 𝐼′ can be expressed as: 

 𝐼′ = 𝑊 ∗ (𝐼 + 𝜂) (12) 

In practice, shallow convolutional neural networks are more sensitive to input noise. 
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3.4.4. Generative Adversarial Network 

Generative Adversarial Networks show some resistance to noise in the image encryption process. 

However, in practice, noise may still introduce some bias in the training process, especially if the 

network is not adequately trained or the training data is not sufficient. 

Combined with Eq. 8, if the noise 𝜂  has less effect on the output of the generator, i.e., the 

generator's gradient change to the noisy input is low, then the effect of the noise 𝜂 on the encrypted 

image 𝐼′′ is also low 

3.5. Analysis of Visual Entropy 

The visual entropy 𝐻(𝐼′) can be calculated from the distribution of gray values of the image: 

 𝐻(𝐼′) = − ∑ 𝑝(𝑖)log 𝑝(𝑖)
255

𝑖=0

 (13) 

where 𝑝(𝑘) denotes the probability that a pixel with a gray value of 𝑘 in the image. 

Chaotic Neural Networks (CNNs) are able to significantly increase the visual entropy of encrypted 

images through their stochastic nonlinear mapping. 

Cellular neural networks utilize their highly sensitive network parameters and nonlinear dynamic 

evolutionary processes to significantly enhance visual entropy. 

Convolutional neural networks have a relatively limited effect on visual entropy enhancement in 

image encryption, and the linear nature of the convolutional operation and the stability of the weights 

make the gray scale distribution of the encrypted image less variable. 

GAN realizes complex transformations of image features through adversarial training of 

generators and discriminators, thus breaking the gray scale distribution and pixel correlation of 

images to a certain extent and improving visual entropy. 

3.6. Analysis of Image Distortion 

Distortion can be measured by calculating the similarity of the images before and after encryption. 

For example, distortion is measured by the Structural Similarity Index (SSIM): 

 SSIM(𝐼, 𝐼′) =
(2𝜇𝐼𝜇

𝐼′
+𝐶

1
)(2𝜎

𝐼,𝐼′
+𝐶

2
)

(𝜇𝐼
2

+𝜇
𝐼′

2
+𝐶

1
)(𝜎𝐼

2
+𝜎

𝐼′

2
+𝐶

2
)
 (14) 

where 𝜇𝐼 , 𝜇𝐼′ denote the mean values of the original image 𝐼 and the encrypted image 𝐼′, respectively, 

𝜎𝐼 , 𝜎𝐼′ denote their variances, respectively, 𝜎𝐼,𝐼′ is their covariance, 𝐶1, 𝐶2 are constants. 

Chaotic neural networks usually introduce large distortions. The “chaotic” nature of chaotic 

systems ensures that the correlation between neighboring pixels in an encrypted image corr(𝐼𝑖
′, 𝐼𝑗

′) is 

almost zero, which usually leads to a significant decrease in SSIM values. 

Cellular neural networks are able to perform complex nonlinear transformations of the input image 

and noise, resulting in higher image distortion. 

Since the convolution operation is based on a local perception mechanism that relies on stable 

weights obtained by optimization during training, the distortion in image encryption is usually low. 

The distortion ability of Generative Adversarial Networks in image encryption is between Chaotic 

Neural Networks and Convolutional Neural Networks. GAN achieves complex transformations of 

image features through the adversarial training of generators and discriminators, and is able to destroy 

the correlation between neighboring pixels in an image to some extent. 
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3.6.1. Tables 

Table 1, Table 2 demonstrate a comparison of the characteristics of four neural networks in six 

domains. 

Table 1: Chaotic Neural Network & Convolutional Neural Network. 

Specificities Chaotic Neural Network Convolutional Neural Network 

Key Space Size 

Very large. Chaotic systems are highly 

sensitive and small changes in initial 

conditions and parameters can lead to 

completely different encryption 

results, so the key space is very large. 

Smaller. The encryption 

method of convolutional neural 

networks relies on the weights 

and parameters of the network, 

and although the number of 

layers can increase the 

complexity to a certain extent, 

the key space is smaller 

compared to chaotic systems 

Key Sensitivity 

Very sensitive. The characteristics of 

chaotic systems make the effect of the 

key on the encryption result extremely 

sensitive, and even small changes in 

the key can significantly change the 

encryption result 

Lower sensitivity. 

Convolutional neural network 

encryption is smoother and the 

key has relatively little effect on 

the encryption result, which 

may be easier to brute-force 

decryption or statistical attacks 

Neighboring Pixel 

Correlation 

Lower. Due to the random and 

nonlinear nature of chaotic mapping, 

the correlation between neighboring 

pixels is effectively broken 

Higher. Convolutional neural 

networks retain more localized 

features during encryption, with 

higher correlation between 

neighboring pixels 

Noise Resistance 

Stronger. Due to the nonlinearity and 

randomness of the chaotic neural 

network, the effect of noise on the 

encrypted image is less and has better 

noise resistance. 

Weaker. When a convolutional 

neural network processes an 

image, the noise may spread to 

the surrounding pixels, 

affecting the quality of the 

entire encrypted image 

Image Distortion 

Larger. Due to the complexity of 

chaotic mapping, the image 

information can be highly perturbed, 

leading to larger distortions 

Smaller. Convolutional neural 

networks are better able to 

preserve the local structure of 

an image by locally weighted 

convergence 

Visual Entropy 

Higher. Chaotic neural networks 

generate encrypted images with high 

visual entropy through high 

randomness and complex mapping 

processes 

Lower. Convolutional neural 

networks retain more of the 

original image structure, so the 

visual entropy of the encrypted 

image is lower 
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Table 2: Cellular Neural Network & Generative Adversarial Network. 

Specificities Generative Adversarial Network Cellular Neural Network 

Key Space Size 
Large, limited by randomness of 

generator parameters 

Large, but highly sensitive to 

weights 

Key Sensitivity 
Low, key changes have limited effect 

on encryption results 

High, key changes lead to 

significant image differences 

Neighboring Pixel 

Correlation 

Can be broken to some extent, but local 

correlation may remain 

Nonlinear dynamic evolution 

breaks pixel correlation 

completely 

Noise Resistance 
Strong, good suppression of random 

noise 

Weak, noise effects spread 

easily 

Image Distortion 
High, the generated image may differ 

significantly from the original image 

High. It can effectively break 

the correlation between 

neighboring pixels in an image 

Visual Entropy High, better hiding effect 

High, significant entropy 

increase by nonlinear dynamic 

evolution 

4. Conclusion 

The paper first introduce four neural network models that have been widely used in the field of image 

encryption, briefly categorize each model and describe their respective algorithmic frameworks. After 

the theoretical formula research as well as operations, respectively, four common neural network 

models in cryptography original language and encrypted image quality and other two major areas, six 

aspects of the comparison, found that the encryption effect of the neural network model to a large 

extent by the parameters of the model as well as the specific encryption algorithms, on the whole, 

chaotic neural networks and cellular neural networks are more sensitive to the initial value of the 

better encryption effects while convolutional neural networks face certain security challenges in 

encryption effectiveness due to the constraints of weight distribution, dependence on training data, 

and openness of model architecture; the diversity of generator weights and the dimensionality of noise 

vectors in generative adversarial networks together determine the overall encryption effectiveness. 

The application of neural networks in the field of encryption is booming, more and more models 

are appearing, and the application of each model in different fields is more refined, and we hope that 

this paper can provide a little bit of insight and help to researchers in related fields. 
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