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Abstract: In the era of big data, data analysis is crucial to enterprise decision-making, but the 

traditional SQL query writing poses a challenge for non-professionals. With the rapid 

development of NLP technology, large language models (LLM) such as BERT and GPT have 

shown strong capabilities. In this paper, the template filling method is used to study the 

NL2SQL task in the single table scenario and design query templates containing multiple slot 

bits. The experimental results show that the constructed model achieves high logical form 

accuracy (LX) and execution accuracy (EX) in both the validation set and the test set, and 

improves the fault tolerance through fuzzy matching. In addition, the model also performs 

well in each sub-task, and the introduction of word and table field similarity (sim) further 

improves the accuracy of conditional value prediction. 
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language processing 

1. Foreword 

In the era of big data, data analysis has become an important support for enterprise decision-making. 

However, traditional data analysis processes often require professionals to write complex SQL query 

statements [1], which is a huge challenge for non-professionals. With the rapid development of 

natural language processing (NLP) technology, large language models (Large Language Model, LLM) 

such as BERT, GPT and so on have shown strong capabilities in many fields [2]. This paper will 

explore the application of large language model of data semantic information in SQL generation task, 

and reveal how it can change the pattern of data analysis industry. 

2. Introduction of the large language model 

Large Language Models (LLMs) are deep learning-based natural language processing models that 

learn syntax and semantics to generate human-readable text [3]. Trained on large-scale corpora (e.g., 

BERT, GPT), they excel in natural language understanding, generation, and translation. The core 

technologies include deep learning, neural networks (e.g., RNN, LSTM, Transformer), and the self-

attention mechanism. These technologies enable feature extraction, pattern recognition, and 

contextual understanding by processing sequential data and capturing long-range dependencies [4]. 
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3. And the core method and experimental dataset 

3.1. The core method 

Template filling is a common method for NL2SQL tasks in single-table scenarios, relying on 

predefined templates and filling rules to split SQL generation into subtasks. This method clarifies 

query language and structure, avoiding complexities of multi-table scenarios. We adopt this method 

for single-table NL2SQL tasks. The template captures key information with slots for SQL 

components (e.g., table names, fields, operators). The template form is: 

SELECT [Column 1, Column 2, ...] FROM [Table name] WHERE [condition 1, condition 2, ...]. 

Candidate values for fields and operators are predefined based on the database structure, including 

aggregation functions (AGG), columns (COL), operators (OP), conditional values (VALUE), and 

connectors($CONN). We use the Chinese-BERT-WWM model to encode natural language queries 

and database fields into context-dependent vector representations for semantic resolution in SQL 

generation. 

3.2. The experimental dataset 

The Spider dataset, a highly representative SQL dataset, was used in this experiment. It contains over 

200 databases across various fields, with around 11,000 natural language queries and corresponding 

SQL statements. These queries cover complex scenarios like single-table queries, multi-table joins, 

subqueries, and aggregations, providing robust data for model training and evaluation. 

Additionally, a specialized test set was constructed to assess the model's adaptability to different 

database environments. This test set includes variations in relational databases such as MySQL and 

PostgreSQL, covering differences in table naming, column data types (e.g., DATETIME vs. 

TIMESTAMP), and primary/foreign key settings. Experiments on this test set evaluate the model's 

flexibility in diverse real-world database scenarios. 

4. Comparative model analysis 

4.1. Comparison model 

To comprehensively evaluate the performance of our constructed models, several representative 

traditional SQL generation methods and large language models without fused semantic information 

of the data were selected for comparison. 

Rule-based SQL generation method: This method generates SQL statements using predefined 

syntax and semantic parsing rules. For example, "Find an employee older than 30" maps "find" to 

SELECT and "older than 30" to a WHERE clause condition. However, it struggles with complex 

natural language and diverse database schemas due to rule limitations. 

Template-based SQL generation method: This method uses predefined SQL templates and fills 

them based on query keywords and syntax. For example, "Count the workforce for each department" 

matches a template like SELECT Department, COUNT (*) FROM Employee Table GROUP BY 

Department. Its performance depends on the completeness of the template library and struggles with 

special queries or new database schemas.  

GPT-3 model without data and semantic information fusion: Although GPT-3 excels in natural 

language processing, it faces challenges in accurately mapping natural language queries to database 

tables and columns in SQL generation tasks due to the lack of data semantic fusion. This is 

particularly evident in complex queries involving multiple tables.  
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4.2. Evaluation indicators 

Logical form accuracy (LX) and execution accuracy (EX) are used as the key evaluation indicators. 

Logical form accuracy (LX): This metric measures the matching degree of the generated SQL 

statements with the real SQL statements in terms of grammatical structure and logical expressions. 

For example, errors in the spelling of column names in the SELECT clause or incorrect use of 

conditional operators in the WHERE clause will reduce LX accuracy. It focuses solely on the syntax 

and logical correctness of the SQL statement, without considering the execution results in the actual 

database environment. 

Execution accuracy (EX): This index focuses on the consistency between the results obtained by 

the generated SQL statement and the real results in the actual database. Even if the SQL syntax is 

correct, EX accuracy is affected if the table or column selection is wrong, leading to incorrect 

execution results. For example, when querying "Find out the employee in the sales department," if 

the table name is incorrect, the execution result will be wrong, thus reducing EX accuracy. 

5. Experimental results 

It is clearly seen from the above experimental results that the large language model integrating the 

semantic information of data constructed in this paper is significantly higher in both logical form 

accuracy and execution accuracy than other comparison models in the validation set and test set. In 

the validation set, the accuracy of the logic form reached 0.85, which increased by 25 percentage 

points compared with the rule-based method, and the execution accuracy reached 0.80, an increase 

of 25 percentage points. It also performs well on the test set, which fully proves that the semantic 

information of the fusion data and the template filling method can effectively enhance the 

performance of large language models in SQL generation tasks. 

Table 1: Large language models incorporating semantic information of the data in the validation set 

and test set analysis 

model 
validation set 

LX 
validation set EX test set LX test set EX 

Rule-based approach 0.60 0.55 0.58 0.53 

Template-based approach 0.65 0.60 0.63 0.58 

GPT-3 without fused 

semantic information of the 

data 

0.70 0.65 0.68 0.63 

The model constructed in 

this paper 
0.85 0.80 0.83 0.78 

Still generating efficient SQL statements in the face of the imprecision of the natural language 

input, we introduce a fuzzy matching mechanism. When matching keywords in natural language with 

database table fields, a fuzzy matching algorithm based on edit distance (such as Levenshtein distance) 

is used. The algorithm measures the similarity of two strings by calculating the minimum number of 

editing operations (insertion, delete, replace). For example, when an Employee Name appears in 

natural language and the field name is "employee_name", the fuzzy matching mechanism calculates 

the edit distance between the Employee Name and all the field names in the database. Assuming that 

the edit distance between "employee name" and "employee_name" is 3, and the edit distance from 

other field names is greater than 3, then the model can identify the association of the two. In this way, 

the model can match according to the similarity even if the keywords are not exactly consistent with 

the fields. In practical tests, when entering some natural language queries with misspelling or irregular 

representation, the proportion of models that introduce fuzzy matching mechanism generating correct 
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or approximately correct SQL statements is increased by about 15%, compared with those that were 

not introduced, which greatly enhances the practicability of the model in practical application. 

The performance of the model on each subtask is deeply analyzed, including column selection, 

table selection, condition generation, and conditional value prediction. 

Table 2: Performance on each subtask 

subtask precision 

Column selection 0.90 

table select 0.95 

Conditional generation 0.88 

Prediction of conditional values 0.85 (before sim); 0.90 (after sim) 

The model achieved high accuracy in column selection (0.90) and table selection (0.95) subtasks, 

attributed to its effective integration of data semantics and deep natural language understanding. For 

instance, given the query "Get product names with prices greater than 100 in the product table," it 

accurately identified the "Product Table," "Product Name," and "Price" columns. In conditional 

generation, the model reached an accuracy of 0.88, capable of generating SQL conditional 

expressions from natural language descriptions, though occasional errors occurred with complex 

logical relationships. 

For conditional value prediction, accuracy improved from 0.85 to 0.90 after introducing a semantic 

similarity metric (sim) to match natural language values with database values [5]. For example, when 

the query mentioned "red product" and the database had "Red" in the color field, the similarity 

calculation enabled accurate matching. This demonstrates that precise alignment of natural language 

and database fields significantly enhances the model's ability to generate complex conditions. 

6. Conclusion 

In conclusion, large language models incorporating semantic information of data show significant 

advantages in SQL generation tasks. Through the template filling method, the model can effectively 

convert natural language queries into SQL statements, meeting the needs of non-professionals for 

data analysis. The experimental results show that the constructed model achieves satisfactory results 

in both logical form accuracy and execution accuracy, and improves the fault tolerance through fuzzy 

matching. Moreover, the high accuracy of the model on each subtask also demonstrates its powerful 

natural language understanding and generation capabilities. 
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