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Abstract. Lung cancer has been identified as a serious and fatal disease due to its high 

morbidity and mortality. It is of vital importance for lung cancer patients to obtain early 

detection of the disease so that the later treatments may bring good effects. Lung computed 

tomography (CT), as a normal method to diagnose the disease, can be used to recognize typical 

lung cancer, but it is possible to confuse cancer with some other diseases, such as innocent 

tumour and phthisis. Therefore, an accurate diagnostic tool is required to help clinical disease 

recognition. Machine learning (ML), especially deep learning (DL) is an ideal technique to 

classify CT images thanks to the great capability of image processing and feature recognition. 

However, the task for ML faces several challenges that have made a negative difference in the 

accuracy of algorithms. The main problem is that lung nodules can have heterogeneous sizes 

and shapes varying in a wide range, thus both local and global features of data should be 

considered to enhance the classification results. In this work, the author investigated advanced 

works in the territory of lung cancer identification using ML and the comparison results of 

newly proposed models and proper analysis are provided. In addition, possible future 

improvements are discussed. 

Keywords: Computer Vision, Deep learning, Non-local network, Computer-Aided Diagnoses, 

Lung Nodule classification. 

1. Introduction 

The high mortality of lung cancer has led to its long-standing classification as a severe type of cancer. 

Typically, lung cancer does not cause symptoms until it has extended to other body parts or beyond 

the lungs. This suggests that the prognosis is less favourable than it is for many other cancer types. 

After being diagnosed, one in three people with the illness survive for at least a year, and one in 

twenty survive for at least ten years [1]. In these circumstances, early diagnosis of this illness is 

thought to be important since it can increase the efficacy of the available treatments and the likelihood 

of survival. 

However, the diagnosis is normally accomplished by doctors through observing CT images, which 

is defective since it is time-consuming and prone to confusion with other diseases. Computer-Aided 

Diagnoses (CAD) is therefore regarded as a potential way to provide early detection [2]. One of the 

most successful methods for assisting doctors in this area is deep learning-based CAD. 

In this work, lung nodule classification is mainly considered. Convolutional Neural Network (CNN) 

is now integrated into many computer vision works and the capability of it also increases as the 
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structure of the network becomes deeper. From the LeNet [3] to VGG [4] and ResNet [5], the 

networks now can have hundreds of layers. But the classification accuracy did not increase as much as 

the number of layers. As of the writing date, the highest accuracy, which is 95.28%, is reached by 

ProCAN [6] model. This can be caused by several factors. First, the dataset used (LIDC-IDRI [7]) for 

the task is small-scale compared to other tasks. On the other hand, the size and shape of lung nodules 

vary substantially, and sometimes it is hard to identify whether a nodule is benign or malignant. 

To solve the problem, methods that may take more features of data into consideration are 

introduced. In 2018, DeepLung [8] model extract features by using a 3D dual-path network and 

separate the task into nodule detection and classification. The experiment result of DeepLung shows 

its advanced capabilities in both nodule and patient, which reached an accuracy of 90.44%. In addition, 

Local_Global [9] used a network with the ability to capture both local and global features and brought 

an accuracy of 88.46%. One recently proposed model called ProCAN [6] improved the non-local 

mechanism in Local_Global by utilizing channel attention and integrated progressive learning in the 

training session has increased the accuracy to 95.28%. These existing results show that such a method 

augmenting the effects of original data can enhance the prediction ability of neural network models. 

The work mainly considers and compares Local_Global and ProCAN models on both the feature 

extraction mechanism and other techniques used. The author also analyzed the possible feasibility and 

reason for the improvements brought by these mechanisms. The research is conducted as the following: 

1. a summary of the current state of knowledge and issues in the area of lung nodule identification and 

categorization 

2. analyze and introduce the specific structural design of Local_Global and ProCAN 

3. study and compare the performance of each model, analyze the reasons why good models are able 

to produce high accuracy, and provide future improvement trends 

2. Description of Local_Global 

2.1. Residual blocks 

Local-Global [9] is a neural network model used for pulmonary nodule classification using residual 

block and non-local network. Residual Block was first used in ResNet [5] and is now widely used in 

computer vision problems solving, especially integrated in Convolutional Neural Networks (CNNs). 

Specifically, several existing works for categorizing lung nodules adopted this network architecture 

[10]. CNN has been developing in the direction of "Deep”, which means the number of layers of a 

network experienced considerable growth from LeNet [3] with 5 layers to VGG [4] with 19 layers. In 

ResNet where a residual block is proposed, the number of layers of CNN is enlarged to 152. However, 

as the networks become deeper, gradient vanishing and exploding problems appear and lead to the 

optimization of the network harder and harder. To make training deep networks possible, residual 

network rises. This architecture transfers the optimization objective from the desired mapping output 

to another function as formula 1:  

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (1) 

From Figure 1 we can see that residual blocks are used to connect non-local blocks in the network. For 

simplicity in computing, the kernel size of the residual block is selected to be 3⨯3. Figure 2 shows that 

the input 𝑥 is passed to the output of two convolutional layers, namely 𝐹(𝑥) and the task is to fit for a 

suitable 𝐹(𝑥) using the two layers. 

 

Figure 1. The overall network architecture of Local-Global. 
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Figure 2. Residual block in Local-Global network. 

2.2. Non-Local network 

In the Local-Global model, non-local neural networks [11] are used to obtain global features. The 

mechanism, sometimes called Self-Attention Layers [12], aims to amplify the respective field in 

convolutional operation in CNN. Normally, the CNN can only extract features in the scope of kernel 

size, which is believed to be local and restrictive. Since nodule size can vary greatly, it is essential to 

consider the overall characteristics of the picture when classifying pulmonary nodules. The non-Local 

block initially leverages a linear convolution of the sample data, as seen in Figure 1. Each of these 

convolutions has a kernel size of 1. By this means, dimension reduction of original input is 

implemented so that later computation for the non-local network is simplified. These linear 

transformations provide the values 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥). Then, using Equation (2), the fundamental 

notion of non-local networks is applied, which is essentially matrix multiplications between the 

features: 

𝑥 + ℎ(𝑥)𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑓(𝑥)𝑇𝑔(𝑥))
𝑇

𝛾 (2) 

Figure 3 is an illustration of how the matrix computation is organized. The advantage of matrix 

multiplication is that it makes it possible for the network to gather general spatial characteristics 

through non-linear interaction. Without the need for parameters, every element in 𝑓(𝑥) is multiplied 

by every element in 𝑔(𝑥). Values are then mapped into the 0–1 range, and the result is processed 

using the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function to establish that the total of each feature map is equal to 1. The network 

may concentrate on certain ℎ(𝑥) locations using these feature maps as attention masks. Multiplying 

ℎ(𝑥) by the output of 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 causes the regions receiving little attention to be deleted and therefore 

free the next layer from the calculations of these features. 𝛾 in Equation (2) is a changeable argument 

that is used to control the influence of the non-local layer. In addition, dropout regularization is used to 

avoid overfitting. 

3. Description of ProCAN 

ProCAN [6] is a new model proposed recently. The model adopts a strengthened non-local network 

which is called a channel attentive non-local network and a progressive growing method for the 

 

Figure 3. This figure shows how the feature matrix is calculated. 
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training process. Given an accuracy of 95.28% and an AUC of 98.05%, the model achieved the state-

of-the-art standard on the LIDC-IDRI dataset.  

3.1. Non-local network with channel attentive mechanism 

ProCAN uses similar non-local processing methods for sample images with Local-Global and adds a 

Channel attentive operation to consider channels of the image. Figure 4 demonstrates how the channel  

attentive non-local (CAN) network is structured. By linear transformation toward input 𝑋 , three 

feature spaces obtained: 

𝑄𝑖,𝑗 = 𝑀𝑖,𝑐
𝑞

𝑋𝑐,𝑗 (3) 

𝐾𝑖,𝑗 = 𝑀𝑖,𝑐
𝑘 𝑋𝑐,𝑗 (4) 

𝑉𝑖,𝑗 = 𝑀𝑖,𝑐
𝑣 𝑋𝑐,𝑗 (5) 

where 𝑐, 𝑗, 𝑖 are dimensions of input 𝑋 and 𝑀𝑞 , 𝑀𝑘 , 𝑀𝑣   are learnable arguments. Equations (3) to (5) 

deal with straightforward matrix multiplications between matrices M and X, and they may be 

efficiently carried out using convolution. The output of multiplication matrix 𝑄𝑇  and 𝐾  is then 

subjected to 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  to produce a spatial attention matrix 𝐵 . The attention matrix is finally 

computed using matrix multiplication once again. The entire procedure may be pictured as follows: 

𝑉𝑖,𝑗𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖,𝑗
𝑇 𝐾𝑖,𝑗) (6) 

It is worth mentioning that the attention obtained here does not change for different channels since 

each channel is multiplied by the same matrix after 𝑆𝑜𝑓𝑡𝑚𝑎𝑥. Instead, the attention may have variant 

values by pixels.  

In addition to channel-similar attention, ProCAN also uses an attention mechanism that has 

variations depending on channels. First, the task is to find attention for different channels. The step is 

as follows: 

𝑔𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑋𝑐,𝑗(𝑚𝑐
𝑒𝑋𝑐,𝑗)) (7) 

where 𝑚𝑐
𝑒 is a learnable parameter and the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function is used to map values of 𝑔 in the range 

between zero and one. After that, a residual connection of input is introduced: 

Ψ𝑐,𝑛 = 𝐴𝑐,𝑛𝑔𝑐 + 𝑋𝑐,𝑛 (8) 

Spatial attention 𝐴 is multiplied by channel attention 𝑔. Finally, in order to control output channels 

and dimensions, a convolutional layer using 3x3 is used:  

𝑜 = 𝑟𝑒𝑙𝑢(Ψ ∗ 𝑀𝑜) (9) 

 

Figure 4. This figure shows how the input X is processed to extract features in multiple dimensions 

including the channel attentive mechanism. 
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It is helpful to employ non-local networks to capture the general features of lung nodules since they 

might vary in size and form, making it challenging to classify lung nodules. To generate features that 

may describe the size and shape of nodes, global feature extraction utilizing non-local networks is 

necessary. On the other hand, local features emphasize minute details like node density and texture. 

3.2. A progressive training method employing a two-dimensional Bernoulli matrix. 

The ProCAN model also uses progressive growing method to handle the limitation caused by network 

depth and structure. This method is firstly proposed by ProGAN [13] and is used in generative 

adversarial networks to generate images with high revolution easier. The fundamental concept behind 

it is to progressively raise the network's complexity to provide better results. In ProCAN paper, the 

specific action is adding new CAN blocks when training. In the previous introduction, there two main 

components for the network: a series of CAN layers 𝑓0 and a classifier 𝑢. Denote a CAN layer as 𝛼, 

the attention actor can be shown by: 

𝑓0 = 𝛼𝑘(𝛼𝑘−1(… , 𝛼1(𝑋)) (10) 

where 𝑘  is the number of CAN blocks, and to augment features, another set of CAN blocks is 

connected to the end of 𝑓0: 

𝑓𝑙 = 𝛼𝑙(𝑓0(𝑋)) (11) 

here 𝑙 is the number of added CAN blocks. Given that adding these blocks may affect the archaic 

training effectiveness and result in unexpected delay, the gradual growing is integrated to control the 

impact of newly added blocks. To implement this, a scalar 𝑝 whose value varies from 0 to 1 is used. 

According to the training state, the actual value of 𝑝 increases to take more features from 𝛼𝑙  into 

account. Specifically, at the start state, the network does not use the new blocks at all and the value of 

𝑝 is zero. As the training goes on, it is required to enhance the impact of new features gradually. Thus, 

the value is set to be 0.25, 0.5, 0.75 respectively in the transitional state. Finally, the network may only 

accept features from 𝛼𝑙, which means 𝑝 is set to be one at the final stage. The way to take both set of 

features into consideration can be expressed as follow: 

𝑓 = 𝑝𝛼𝑙(𝑓0(𝑋)) + (1 − 𝑝)𝑓0(𝑋) (12) 

However, multiplying the feature matrices by the scalar may affect the performance of non-local 

network because the concrete values may be distorted. Therefore, the ProCAN uses a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 
matrix with a probability of 𝑝 to pass the original appearance of the features that exceed the threshold 

value. Also, feature values less than the probability are prevented from making a difference on the 

network. With the 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 matrix described as Ω ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), the updated version of features 

passed is: 

𝑓 = Ω𝛼𝑙(𝑓0(𝑋)) + (1 − Ω)𝑓0(𝑋) (13) 

4. Comparison and revelation 

4.1. Effectiveness of non-local network in lung nodule classification 

Both models mentioned above adopt non-local methods. The term "Local" refers to the receptive field, 

which is the feature capture capability of network in observation. Taking the convolution operation as 

an example, the size of its receptive field is the size of the convolution kernel, and we typically use 

convolution kernels such as 3⨯3, 5⨯5, which only examine local regions, making them all local 

operations. Pooling operation is another example of local operations. It moves a forward step to 

extract features of images based on the convolution results. However, some tasks may need more 

information from the original picture. In contrast to a local field, non-local neural networks [11] 

indicates that the receptive field might be vast.  

The use of non-local network in lung nodule classification is shown to be successful. As shown in 

Table1, Model Local-Global [9] reached a relatively high accuracy and AUC by simply embedding 

non-local blocks in the network, while other models shown in this table adopt multiple other methods 
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such as knowledge-based collaborative submodel [14] and multi-view [14][15] method. In addition, 

ProCAN [6] introduce a new channel-attentive method for non-local and integrate progressive growth 

architecture to it, which reaches the highest accuracy so far.  

Table 1. Comparisons in terms of accuracy and AUC of several models, Gated-Dilated. 

Name Accuracy AUC 

ProCAN 95.28 98.25 

MV-KBC 91.6 95.7 

MK-SSAC 92.53 98.51 

DeepLung 90.77  

Local_Global 88.46 95.62 

Gated-Dilated [16] 92.57 95.14 

The new attention mechanism CAN in ProCAN also contributes to better performance of the network. 

The CAN block exhibits superiority over the dual attention networks utilized in DeepLung [8], which 

employ two independent blocks and the non-local paradigm for spatial and channel attention. 

4.2. Effectiveness of training method 

 

In addition to improvement in terms of non-local mechanism, ProCAN [6] also uses progressive 

growing method to train the model. ProGAN [13] first suggests a progressive growing network to 

gradually generate images with higher resolutions starting at lower resolutions. The integration of this 

method enhances the final performance according to Table 2 and Table 3. The compounded network 

has obvious advantages over other strategies without integration of multiple technologies. 

5. Conclusion 

The author illustrates Local-Global model and ProCAN model in the previous sections and made a 

comparison trying to analysis the reason why the latter could produce higher accuracy and reaches the 

state-of-the-art standard. The former utilizes non-local network in lung nodule classification to enable 

the network to capture full appearance of training data and therefore reduce the negative effects 

brought by huge variance of lung nodule sizes and shapes. The latter expands the global perception to 

channel dimension inventively and adopts progressive learning method in training. Both non-local 

methods and newly proposed channel-attentive mechanism strengthen the use of training data. This is 

implemented by enhancing the effects of data on the original dimension or extending the data to a 

higher dimension. Under this circumstance, the model can identify nodules with multifarious size and 

form. In addition, the increase of accuracy of ProCAN can be attributed to progressive training method. 

A comparison is made between ProCAN and a model without using progressive training, in which the 

effectiveness of progressive learning is shown. Hence, the author could make a conclusion that a 

model with high classification accuracy is normally a technical cluster of several newly developed 

mechanisms or technologies from other applications of machine learning.  
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