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Abstract. Medical image segmentation models are often tested on the same dataset used for training,
which limits real-world applicability. This paper evaluates the robustness of several 3D and 2D models
by comparing their performance on BTCV and AbdomenCT-1K datasets. The study explores the effects
of model architecture, dimensionality, organ characteristics, and dataset differences on robustness through
visualizations and various metrics, providing insights and recommendations for improving robustness and
generalization.

Keywords: Robustness, Medical Image Segmentation, nnU-Net, nnFormer

1. Introduction
Traditionally, medical image segmentation algorithms are demonstrated by training and testing on the
same dataset, which may not accurately reflect real-world scenarios where variations in data distribution
arise from differences in imaging methods or devices. Additionally, a statistical analysis of research
papers published over the past 14 years reveals a disproportionate focus on model accuracy compared
to robustness(Figure 1). The number of papers addressing robustness is significantly lower than those
focused on accuracy, highlighting a relative neglect of robustness research and underscoring the need for
further investigation in this domain.

To address this gap, we explore the performance of medical image segmentation algorithms when
trained on one dataset and tested on another with distinguishing features. Specifically, we train the
models on the Multi-Atlas Labeling Beyond the Cranial Vault (hereinafter referred to as BTCV) dataset,
and evaluate their performance on the AbdomenCT-1K dataset. Both datasets consist of abdomen CT
scans with multi-organ labels.

2. Methods
2.1. Datasets
2.1.1. BTCV The BTCV dataset [2] is a publicly available medical imaging resource designed for
multi-organ segmentation tasks. It comprises 50 clinically acquired CT scan images, each manually
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Figure 1: The yearly number of research papers on model accuracy and robustness [1].

labeled for 13 abdominal organs, including the spleen, kidneys, gallbladder, esophagus, liver, stomach,
aorta, inferior vena cava, portal/splenic vein, and adrenal glands.

2.1.2. AbdomenCT-1K The AbdomenCT-1K dataset [3] is an augmented collection derived from
existing single-organ datasets, incorporating four abdominal organs: the liver, kidney, spleen, and
pancreas. It is a large and diverse multi-organ segmentation dataset consisting of over 1,000 CT scans of
the abdomen.

Figure 2: BTCV dataset(left) and AbdomenCT-1K dataset(right).

2.2. Experiments
The models were selected because they all employ U-Net-like architectures but incorporate different
types of basic blocks, which may affect their robustness.

We designed the experimental background to fairly compare the robustness of models in the face of
a large amount of unfamiliar data, utilizing a limited number of training instances under rapid training
conditions.

Following standardized training procedures, we set a lower tolerance level by stopping training early
if the model does not improve within 25 epochs. This approach is designed to prevent overfitting and to
control variables while focusing on robustness.

During inference, we align the label tags of the inference instances with those in the AbdomenCT-1K
dataset, while additional organ labels from the BTCV dataset are reset to 0 and treated as background.

All experiments are conducted using an NVIDIA RTX 3090 GPU.

2.2.1. 3D Models In the 3D experiments, the nnFormer [4], nnU-Net [5], and Channel-Spatial-
Attention nnU-Net [6] (hereinafter referred to as CSA-nnU-Net) adhere to the adaptive architecture of
nnU-Net.
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2.2.2. 2D Models In the 2D experiments, 3D data files (.nii or.nii.gz) are sliced into 2D images in a
certain order and applied to the TransUNet [7] and UNet++ [8] models.

3. Results and Discussion
3.1. Experiments result

Table 1: Comparison of model performance on BTCV dataset (the average validation Dice of the saved
best model) and AbdomenCT-1K dataset (the average Dice of all inferences). For each organ and the
average values, the optimal Dice scores for both 3D and 2D models are highlighted in bold, while the
overall best values across all five models are emphasized with a yellow background.

Dice on BTCV dataset Dice on AbdomenCT-1K dataset
Label1: Label2: Label3: Label4: Average Label1: Label2: Label3: Label4: Average
Liver Kidney Spleen Pancreas Dice Liver Kidney Spleen Pancreas Dice

nnFormer 0.9492 0.9005 0.8915 0.7797 0.8842 0.9629 0.9147 0.9620 0.7382 0.8945
nnU-Net 0.9455 0.9153 0.7926 0.7216 0.8506 0.9583 0.9107 0.9553 0.7874 0.9030

CSA-nnU-Net 0.9192 0.8608 0.8012 0.6257 0.8189 0.9392 0.9102 0.9387 0.7766 0.8912

TransUNet 0.9399 0.8045 0.8593 0.5368 0.7889 0.8482 0.8286 0.5595 0.3191 0.6388
UNet++ 0.8874 0.8965 0.6685 0.7800 0.7154 0.8791 0.7920 0.7452 0.6161 0.7580

3.1.1. 3D Models As shown in Table 1, nnFormer achieved the best average Dice score in the
segmentation of the liver, kidney, and spleen, while nnU-Net performed better in the pancreas.

To be more specific, the maximum, minimum, and variance of Dice scores are calculated and
presented in Table 2, with the best values highlighted in bold in the table. The nnFormer achieved the
highest max/min Dice scores and the smallest variance across the first three classes, only slightly trailing
the CSA-nnU-Net by 0.00006 in the maximum score for the kidney class. In contrast, nnU-Net held
the leading position in the pancreas class. This suggests that under nearly identical training constraints,
nnFormer exhibits better performance across the first three classes. Conversely, nnU-Net demonstrates
better performance in the pancreas class.

Table 2: Comparison of 3D models performance on the AbdomenCT-1K dataset (including the
maximum, minimum, and variance of the Dice score for each organ, with the optimal values for each
item highlighted in bold).

Label1: Liver Label2: Kidney Label3: Spleen Label4: Pancreas
Max Min Var Max Min Var Max Min Var Max Min Var

nnFormer 0.9816 0.8723 0.0003 0.9606 0.6696 0.0018 0.9916 0.6227 0.0021 0.9103 0.1583 0.0250
nnU-Net 0.9785 0.7327 0.0007 0.9590 0.1651 0.0052 0.9879 0.0838 0.0098 0.9301 0.3722 0.0106

CSA-nnU-Net 0.9701 0.7246 0.0013 0.9607 0.5987 0.0019 0.9882 0.0997 0.0152 0.9204 0.3264 0.0117

Furthermore, we visualize [9] five instances of AbdomenCT-1K dataset and compared the ground
truth and the inferences of different models, as shown in Figure 3. We also observe that the instance with
the lowest Dice score was the same for both nnU-Net and CSA-nnU-Net, so we visualize and compare it
in Figure 4 case (a). The poor performance in this instance is due to the misidentification of the spleen as
the liver by the nnU-Net-based models. Meanwhile, the worst segmentaion of nnFormer is also presented
in Figure 4 case (b), indicating the omission of pancreas and misidentification of kidney.
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Figure 3: The 3D visualization results of five instances include a comparison between the ground truth
and the inferences of three models. The red, green, yellow, and blue masks represent the liver, kidney,
spleen, and pancreas, respectively.

Figure 4: Visualization results of the segmentation instance with the lowest Dice score. The red box
highlights significant segmentation errors. The annotations next to the segmentation results indicate the
lowest Dice value, with label 3 (spleen) in case (a) and label 4 (pancreas) in case (b). The label colors
have the same meaning as those in Figure 3.

3.1.2. 2D Models As shown in the Table 1, both models perform consistently well on the liver and the
kidney, but for spleen and pancreas, UNet++ demonstrates much better generalization, particularly on
the pancreas. TransUNet’s poor performance on these organs in the test set highlights the difficulty of
the transformer-based architecture to generalize well on small, variable-shaped organs when trained in a
2D context.

The overall results suggest that while TransUNet shows strong performance on the BTCV training set,
especially for more straightforward organs like the liver and spleen, it struggles to generalize to unseen
data from the AbdomenCT-1K test set. The model’s Dice scores drop notably for challenging organs
such as the spleen and pancreas, indicating potential overfitting to the BTCV training data. In contrast,
UNet++ demonstrates better generalization across the test set.

Compared with the results of training the model directly in 3D, this 2D slicing method reduces the
difficulty of model training to some extent, but the results are far from 3D.

3.2. Discussion
3.2.1. 3D Discussion The nnU-Net, which relies on convolutional blocks, excels at capturing local
spatial context and is widely recognized and used globally. CSA-nnU-Net builds upon nnU-Net by
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Figure 5: Visualization results of the segmentation by UNet++ and TransUNet.The orange, cyan, blue,
and yellow masks represent the liver, kidney, spleen, and pancreas, respectively.

adding an attention block without altering other aspects of the model. In contrast, nnFormer utilizes
volume attention, allowing it to effectively learn long-range relationships and integrate contextual
information, which is crucial for accurately segmenting large 3D CT images, particularly within the
bottleneck block.

Following the guidelines provided in [10], we computed metrics including Dice, Accuracy, AUC and
Volumetric similarity. The four metrics selected show a non-strong correlation to reflect the evaluation
of the model prediction results from different aspects [11]. Additionally, we generated violin plots to
illustrate the distribution across the dataset. Thus, more specific explanations can be given.
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Figure 6: Metrics of nnFormer.
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Figure 7: Metrics of nnU-Net.
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Figure 8: Metrics of CSA-nnU-Net.

Overall, the different metrics for the three models exhibit shapes that approximate a normal
distribution. In the segmentation of the first three classes, the predictions made by nnFormer (Figure
6) across the four metrics are closer to 1 and more concentrated, particularly with no outlier results.
This is crucial in medical image segmentation, as it indicates that the model is less likely to produce
anomalous results when dealing with CT scans captured under different conditions, thereby avoiding
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potentially severe consequences. This suggests that nnFormer demonstrates better robustness during
transfer learning.

In the segmentation of the pancreas, the metrics reveal that the UNet-based models outperform
nnFormer. Although less pronounced, nnU-Net (Figure 7) slightly outperforms CSA-nnU-Net (Figure
8). The nnFormer, compared to other models, exhibits more outliers in the pancreas segmentation, with
distributions ranging from 0 to near-normal at the tails. This indicates that while the model has learned
the main features of this class, it lacks generalization and detailed understanding, resulting in poorer
performance in terms of transferability and robustness.

As for CSA-nnU-Net, it did not demonstrate a clear advantage in any class. Although it performed
the worst on the training set, it showed results comparable to the other two models on the test set. While
this indicates its relatively strong robustness, the final results were still unsatisfactory. Therefore, under
the current experimental conditions, CSA-nnU-Net was unable to fully realize its potential.

However, it is important to note that all models predict some non-fully-connected organ segments,
which is an issue that can potentially be addressed using post-processing methods.

Considering instances where model performance was suboptimal, we found that model robustness is
closely linked to the type of basic blocks used. Since convolutions are adept at capturing local features,
UNet-based models in our experiments tended to mistakenly classify the spleen as the liver due to local
similarities, leading to reduced robustness. However, for smaller organs like the pancreas, the ability of
convolutions to quickly capture spatial detail gives them an advantage in transfer learning scenarios. In
contrast, nnFormer is able to avoid the aforementioned errors. However, during generalization, nnFormer
exhibited an unusual increase in the Dice score for the pancreas, indicating some overfitting given the
limited training set and the small size of the organ. As a result, its robustness across different organs is
uneven.

We believe that for nnFormer, increasing the diversity of the training set should be considered to
compensate for the lack of generalization to the pancreas caused by overfitting. As for CSA-nnU-Net,
the tolerance for early stopping should be increased; otherwise, it may combine the weaknesses of both
convolutional and transformer models rather than their strengths.

3.2.2. 2D Discussion When medical imaging data is reduced from 3D to 2D formats for analysis,
crucial spatial cues between the layers are inevitably diminished. This dimensionality reduction can
hinder the model’s ability to accurately discern and delineate multi-slice structures like the liver or
pancreas.

Utilizing 3D Convolutional Neural Networks for medical image analysis allows for a comprehensive
exploitation of volumetric data, thereby improving segmentation precision. In contrast, 2D models,
which lack depth perception, are disadvantaged when it comes to discerning the intricate spatial
interdependencies inherent in 3D datasets. This limitation can hinder the model’s efficacy in learning
the nuances of complex 3D anatomical configurations or those exhibiting substantial variation across
different slices.

During the training phase, the granularity and visibility of the anatomical features can fluctuate
significantly from one slice to another within the same 3D volume. As 2D slice-based models process
each slice in isolation, they risk overlooking the subtleties of the target anatomy when it is either
diminutive or poorly defined in certain slices. This variability can skew the training process, potentially
leading to suboptimal model performance, especially when the model is exposed to a preponderance of
slices where the target structure is less discernible.

Anatomical entities like the pancreas might be partially visible or entirely absent in some slices, which
can exacerbate the training data imbalance. Such imbalance can skew the model’s learning, causing it to
overfit on more prevalent classes while struggling with less frequent or less conspicuous samples, such
as the pancreas in certain slices.

In conclusion, the transition from 3D to 2D for medical image training often compromises the
segmentation accuracy due to the absence of spatial context, the fragmentation of anatomical integrity,
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and the incapacity to leverage depth information effectively. These limitations can result in less precise
segmentation outcomes, particularly for structures with intricate or irregular anatomical forms, when
employing 2D slice-based models.

4. Conclusion
Our study highlights that 3D models consistently outperform 2D models in capturing spatial relationships
and delivering more accurate segmentation results. The 3D models generally outperform their
performance on the training set when tested on the test set, a feature that is not as evident in the 2D
models.

Convolutional models excel in segmenting small and complex structures due to their strong local
feature extraction capabilities, while transformer-based models demonstrate advantages in handling
larger and more cohesive anatomical regions. The choice of model architecture and dimensional
approach should therefore be carefully considered based on the specific requirements of the medical
imaging task.

Moreover, under the established training conditions, the attention mechanism did not improve the
model’s performance. Careful consideration of the features of the training and test sets, as well as the
training conditions, should be taken before introducing the attention mechanism.

5. Future Work
Given that many factors influence robustness, our incomplete experimental results have certain
limitations. In future work, we suggest the following:

1. Increase the diversity of test datasets: This will allow us to evaluate how the characteristics of the
test datasets (and their differences from the training sets) affect model robustness.

2. Expand the number of experimental models: Introduce additional models that combine
convolutional UNet structures with ViT structures to further investigate the impact of basic blocks
on robustness.

3. Test model robustness under different training conditions: Assess robustness with varying
training durations, epochs, etc., and conduct cross-comparisons with the different models mentioned
in the previous point.
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