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Abstract. Recently, the problem of intelligent video analysis in the field of computer vision is 

receiving considerable attention worldwide. Several studies have proposed some classic methods 

to implement video-based face detection and face recognition. However, it has confirmed that 

the performance of video analysis can still improve in order to make it applicable to more 

scenarios. This article discusses using conventional methods and deep learning to achieve face 

detection. Two main issues need to be solved to accurately observe the performance of face 

detection, method selection, and model construction. AdaBoost and multi-task convolutional 

neural network (MTCNN) are selected to conduct the experiment. The results indicate that it is 

possible to combine these two methods to realize video-based face detection with higher 

performance. 
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1.  Introduction 

With the development of techniques for computer vision (CV), intelligent video analysis has become 

one of the hottest topics in the field of CV. Compared to still images, video data contains a vast number 

of real-time information to be exploited. Recently, many researches especially focus on face detection 

and face recognition from video sources. However, there is still plenty of room to improve precision and 

efficiency. 

The techniques of face detection and face recognition will be discussed in this paper. At the begin of 

the 21st century, traditional algorithms were widely accepted by researchers. Viola and Jones [1] 

introduced a face detection technique using HAAR cascades and AdaBoost. Kwang [2] implemented a 

face recognition system by using principal component analysis (PCA). PCA expresses the original data 

with relatively important information through dimensionality reduction. Additionally, P.N. Belhumeur 

[3] proposed the Fisherface method and compared it with the Eigenface technique. Nowadays, with the 

emergence of deep learning, it’s possible for people to achieve the state-of-art face detection and face 

recognition. Zhang [4] have designed the multi-task convolutional neural network (MTCNN) which can 

be used to solve the problem of face detection and alignment in an unconstrained environment due to 

various poses, lighting and occlusion. Yi [5] have put forward the DeepID3 network and Jiaolong [6] 

have presented the neural aggregation network, both have achieved great success on video face 

recognition. Through investigation and research, this study will find out a best approach that can be 

applied to video-based face detection by comparing the performance of AdaBoost and MTCNN. 
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The remaining of this paper will be divided into four parts. To begin with, a short literature review 

of history and latest researches of face detection and face recognition will be presented. Then, we will 

show the methodology of this project, which includes AdaBoost and MTCNN. In the next part, the 

results of these methods will be discussed. Last, a short conclusion will be made. 

2.  Literature Review 

2.1.  Previous works 

Since the 1990s, numerous approaches of face detection and recognition have been proposed. Firstly, 

Matthew and Alex [7] developed the Eigenface method for face recognition in 1991. In addition to 

designing a system for automatic face recognition using feature surfaces, they also demonstrated a 

method for computing eigenvectors of covariance matrix, enabling computers of the time to achieve 

eigen decomposition of a large number of face images.   

However, the Eigenface method didn’t have a wonderful performance from a discrimination 

standpoint. In this case, the Fisherface method, which owned lower error rates that the previous method, 

was raised by Peter [3] in 1997. Its projection method was based on Fisher’s Linear Discriminant and 

produced well separated classes in a low-dimensional subspace.  

Then, Viola and Jones [1] introduced a classical face detection technique, which used Haar cascades 

to describe face features and AdaBoost to train hierarchical classifier. In order to enrich the simple 

features of [1], a extended set of rotated Haar-like features were proposed [8], which could be computed 

efficiently as well. 

In 2002, Kwang [9] came up with Kernel Principal Component Analysis(KPCA). In general, PCA is 

suitable for linear dimensionality reduction of data.  However, KPCA could achieve nonlinear 

dimensionality reduction of data, which was used to deal with linearly indivisible data sets. Therefore, 

a KPCA-based face extraction method produced a good performance on face recognition. 

His [10] presented a face detection algorithm based on skin color segmentation. Firstly, the color 

space of the image is transformed from RGB to YCbCr. Secondly, skin region model and simple 

Gaussian model were established according to the 

clustering performance of skin color points in color space. Finally, the skin color likelihood graph is 

obtained by calculating the skin color similarity, and the face position is determined by smoothing 

filtering, morphological processing and threshold segmentation. 

Entering the 2010s, with the emergence of deep learning method, people became aware that it might 

be possible to achieve the state-of-art of face recognition using this method. At first, Yi [11] introduced 

the DeepID3, which included two very deep neural networks designed for face recognition. It was this 

paper that motivated later studies to further investigate the effectiveness of face detection and 

recognition with deep learning method.  

2.2.  Recent works 

In this part, we are going to focus on the researches of the last 5 years. 

Since more and more researchers have put a lot of time and energy into improvements and 

innovations, deep learning has become the overwhelming technique in face detection and recognition 

[12, 13]. With the emergence of some popular networks, such as Region-based CNN(R-CNN), Fast R-

CNN, and Faster R-CNN, YOLO (You only look once) framework has been invented for detecting faces 

[14]. Moreover, several improvements have been proposed [15, 16] in attempts to enhance the 

performance of face feature discrimination. For example, the marginal loss function concurrently 

minimizes the intra-class variances as well as maximizes the inter-class distances by centering on the 

marginal samples [15]. With the combined utilization of softmax loss and marginal loss, we can readily 

obtain a more robust CNN network. Beyond that, the model trained with large margin cosine loss also 

have a similar effect [16]. Jiaolong [5] have presented the neural aggregation network (NAN). The 

aggregation module of NAN contains two attention blocks which adaptively aggregate the feature 

vectors to yield a singular feature inside the convex hull spanned by them.  
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On top of that, Zhang [4] have designed a novel framework called MTCNN, which is the 

representation of face detection method using deep learning. MTCNN uses multi-task cascaded 

convolutional networks for joint face detection and alignment and each convolutional network does their 

job respectively. 

With the outbreak of Coronavirus Disease 2019 (COVID-2019), detecting faces with masks has 

become one of the hottest topics. To achieve this function, Amit [17] have proposed a dual-stage CNN 

architecture, which is capable of detecting masked and unmasked faces and ensures a safe public 

environment. 

In spite of the prevalence of deep learning, there are also some researchers exploring traditional 

approaches. For instance, Rahmad [18] have made a comparison of Viola-Jones Haar cascade classifier 

and histogram of oriented gradients (HOG) for face detection. Besides that, Etemad, K., & Chellappa 

[19] have also achieved face detection by using Local Binary Pattern (LBP) and Support Vector Machine 

(SVM). The accurate rate of traditional approaches is moderate. 

Last but not the least, Pavel and Sebastien [20] proposed a intriguing application of face detection, 

which is how to detect Deepfake videos successfully. Obviously, the further development of new 

efficient face detection technology is needed. 

After browsing through the studies above, we have come to a conclusion that AdaBoost and MTCNN 

are both the basic of face detection. Therefore, it is meaningful to study these two methods in depth and 

propose a decent video face detection method based on them. 

3.  Methodology 

3.1.  Problem definition 

Face detection is defined as a computer technology that can recognize the presence of human faces in 

digital images or videos. To achieve it, face detection apps use machine learning and formulas called 

algorithms to detect faces in larger images or dynamic videos, which may contain many objects that are 

not faces, such as landscapes, buildings, and other parts of humans (for example, legs, shoulders, and 

arms).  

Face detection is a more extensive concept than face recognition. It has many applications, only one 

of which is face recognition.  Face detection can also be used in autofocus cameras.  It can be used to 

count the number of people entering a particular area.  Moreover, it can even be used for marketing 

purposes. 

Figure 1 represents the whole process of our experiment. We will detect faces in video by using 

AdaBoost and MTCNN. Then, the performance of two methods will be compared and analyzed. Finally, 

we will arrive at a credible conclusion based on the experimental results. 
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Figure 1. The whole process of experiment. 

3.2.  Method selection 

In this part, we will discuss the methods of face detection from video sources. In conventional face 

detection methods, we will select AdaBoost for three reasons. First, before the emergence of deep 

learning, AdaBoost was the most popular and useful method to detect faces in images and videos. To 

some extent, it could represent most of face detection methods. Second, this method builds a fast and 

effective face detection framework, which could meet the immediate requirements. Third, it doesn’t 

demand high computing power like support vector machine (SVM), which means it could run easily on 

embedded, resource-constrained devices.  

For deep learning networks, MTCNN will be the most decent choice for this experiment since it is 

the most classic framework in CNN for face detection and the basis for keeping up with the latest 

researches. Besides that, its innovative use of cascade networks could improve the efficiency of 

detection significantly. Moreover, the structure of each network is not so complicated and easy to 

understand, which could make us conduct this experiment smoothly. 

AdaBoost. As early as in 2001, Viola and Jones [1] proposed a classical face detection technique. 

This method is based on integral graph, cascade classification detector and AdaBoost algorithm. Its 

framework can be divided into the following four steps:  

• Use Haar-like features for detection; 

• Use integral graph to accelerate the evaluation of Haar-like features; 

• Use AdaBoost to select some rectangular features (weak classifiers) that best represent human 

face, and these weak classifiers are constructed as a strong classifier according to the weighted 

voting method; 

• Cascade strong classifiers together to improve accuracy. 
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Haar features, which include three types: edge feature, linear feature, and center feature, is used to 

simulate the relevant features in the face by using some fixed features. Each classifier extracts a 

corresponding feature from the image.  Therefore, they are similar to CNN, in which each convolution 

kernel extracts corresponding features. All types of features are shown in figure 2. 

The feature template contains white and black rectangles, and defines the feature values of the template 

as the sum of white rectangle pixels minus the sum of black rectangle pixels. The value of one Haar 

feature reflects the change of the gray level of the image.   

Rectangular features can be located at any position in the image and their size can be arbitrarily 

changed, so the rectangular eigenvalue is a function of the three factors: the type of the rectangular 

template, the position of the rectangle and the size of the rectangle.  Therefore, the change of category, 

size and position makes a small detection window contain a lot of rectangular features. For example, the 

number of rectangular features in a detection window with a size of 24*24 pixels can reach 160,000.  

This leaves two problems to be solved:   

• How to calculate so many features rapidly? 

• Which rectangular features are most useful for classifiers?  

To solve the first problem, we will introduce the concept of integral graph. In an image window, a 

large number of Haar rectangular feature areas can be extracted. If the rectangular feature areas are 

traversed every time when calculating Haar eigenvalues, a large number of repeated calculations will be 

executed and a significant amount of time will be wasted.  Integral graph is a method to quickly calculate 

rectangular features. The main idea is to save the sum of the pixel values of the rectangular region 

formed between the initial pixel point of the image and each pixel point as an element, that is, to convert 

the original image into an integral graph (or summation graph).  

When calculating the sum of the pixels of a certain rectangular region, it only needs to index the 

values of the four corner points in the rectangular region in the integral graph and perform ordinary 

addition and subtraction operations to obtain the Haar eigenvalues. In the whole process, the image only 

needs to be traversed once, and the time complexity of feature calculation is constant (O(1)), which can 

greatly improve the calculation efficiency.  The formula for the elements in the integral graph is defined 

as follows:   

Where is the pixel value of the image at point. In order to save time and reduce repeated calculation, the 

integral graph of image can be recursively deduced as follows:   

 

Figure 2. Three types of Haar features. 

 

Figure 3. The sum of features. 
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In this way, pixel integration can be performed in any rectangular region.  The gray integration of all 

pixels in any rectangle of an image can be quickly calculated by the integral graph of the image.  As 

shown in figure 3, the value of the integral graph of point a is (where Sum is the gray integration): 

Similarly, the value of integral graphs of point 2, 3 and 4 are: 

The gray integration of all pixels in the rectangular region D can be obtained from the value of 

integral graph of the rectangular endpoint:   

To deal with the second problem mentioned above, we will use the AdaBoost algorithm to build up 

the classification framework. AdaBoost is an abbreviation of Adaptive Boosting. The core idea of 

AdaBoost is to train the same weak classifier for different training sets, and then aggregate the weak 

classifiers obtained from different training sets to form a final strong classifier.  Its self-adaptation lies 

in that the weight of the sample incorrectly classified by the previous basic classifier will increase, while 

the weight of the sample correctly classified will decrease, and it will be used to train the next basic 

classifier again. At the same time, in each iteration, a new weak classifier is added, and the final strong 

classifier is not determined until a predetermined small error rate or a predetermined maximum number 

of iterations is reached.   

Given a training data set: where is the input training sample and represents positive sample and 

negative sample respectively. 

The algorithm flow of AdaBoost is as follows:  

• First, initialize the weight distribution of training data. Each training sample is initially assigned 

the same weight. Hence, the initial weight distribution is: 

• For each (T is the number of weak classifiers): 

• ① A weak classifier with the lowest error rate is selected as the th basic classifier, and 

the weak classifier is calculated. The error of this weak classifier on the distribution is: 

• ② Calculate the weight of this weak classifier in the final classifier (the weight of weak 

classifier is represented by): 

• ③ Update the weight distribution of training samples: 

where is the normalized constant. 

• Finally, the weak classifiers are combined according to the weight of weak classifiers: 

Through the sign function, a strong classifier is obtained: 

were. 

In the final step, several strong classifiers are connected in series to form a cascade classifier. Each 

layer of the cascade classifier is composed of strong classifiers trained by AdaBoost algorithm. When 

the classifier of the first layer gets the correct result of the suspected face, it will trigger the second layer 

for classification. When the classifier of the second layer gets the correct result of the suspected face, it 

will trigger the third layer for classification, and so on. Finally, the image of the suspected face is 

confirmed as a face. On the contrary, when triggered to a certain layer and determined that the result of 

the classifier is not a face, it will immediately stop the detection of the image. The structure of the 

cascade is similar to a pyramid, as shown in figure 4. 

In fact, not only the strong classifier is a pyramid structure, but also every weak classifier in the 

strong classifier is also a pyramid structure. 

MTCNN. Convolutional neural network is a multi-layer neural network composed of overlapping 

convolutional layers used for feature extraction, pooling layers used for feature processing, and fully 

connected layers used for combining all local features into global features. In the convolutional layer of 

convolutional neural network, one neuron only connects with some adjacent neurons. A convolutional 

layer of CNN usually contains several feature maps, and the neurons of the same feature map share the 

same weight, which is the convolution kernel. In general, the convolution kernel is initialized in the 

form of random decimal matrix. In the training process of the network, the convolution kernel will learn 

to get reasonable weights. The immediate benefit of sharing weights (convolution kernels) is to reduce 

connections between layers of the network while reducing the risk of overfitting. There are usually two 

forms of pooling, mean-pooling and max-pooling.  Pooling can be regarded as a special convolution 
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process.  Convolution and pooling greatly simplify model complexity and reduce the number of model 

parameters.   

Multi-task convolutional neural network (MTCNN), which was proposed by Kaipeng Zhang et al. 

[4] in 2016, is used to realize video face detection in this experiment. In this model, three cascaded 

networks are used, and the idea of candidate box plus classifier is used to detect face quickly and 

efficiently. The three cascading networks are: proposal network (P-NET) for fast candidate window 

generation, refine network (R-NET) for high precision candidate window filtering selection, and output 

network (O-NET) for final boundary box and face key point generation. The face detection process of 

MTCNN is shown in figure 5. 

P-NET is a face region area suggested network. The network will input the image into three convolution 

layers. Then, it will determine whether the region of this image is face or not through a face classifier. 

At the same time, using the border regression and a facial point locator to generate face region's initial 

 

Figure 4. The structure of the cascade classifier. 

 

Figure 5. Face detection process 

of MTCNN. 
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proposals. Finally, this part will output a lot of pieces of possible face region, which are fed into R-NET 

for further processing.  

After the image passes through P-Net, there are many prediction windows left, which represent a 

significant amount of possible face regions. We will feed all the prediction windows into R-Net. In this 

network, the input will be refined and most of the wrong proposals will be eliminated. Then, it will use 

the border regression and face key locator again, and finally output more credible face regions for O-

NET to use. Compared with p-NET, which yields 1x1x32 features through full convolution, R-NET 

uses a fully connection layer of 128 after the last convolutional layer, which retains more image features 

and has better accuracy performance than P-NET.  

O-NET is a more sophisticated convolutional network and has more input features. At the end of the 

network, there is also a large fully connected layer of 256 retaining more image features. The final output 

are the upper left and lower right coordinates of the face region and the five feature points of the face 

region, which are also the final output of the model.  

As many convolutional neural network models dealing with image problems, MTCNN also uses 

some traditional methods like image pyramid, border regression and non-maximum suppression (NMS). 

In this experiment, NMS will replaced by Soft-NMS, which is of great benefit to the final result. The 

process of Soft-NMS can be divided into the following three steps:  

• Sort candidate boxes in descending order of confidence; 

• Calculate the values of Intersection-over-Union (IOU) between the first candidate box and the 

remaining boxes, and reduce the score of the box according to the values of IOU; 

• Finally, delete the boxes uniformly according to the score threshold and only preserve the 

highest score box; 

3.3.  Model construction 

AdaBoost. In this experiment, 2600 positive samples and 5500 negative samples will be used for training 

process and there are four Haar classifiers to be trained respectively. We will set following key 

parameters that are related to the performance of each classifier. Number of stages represents the number 

of classes in the course of training and the aim of each class is to obtain a strong classifier. Number of 

splits is identical to the number of spit child nodes or features in a weak classifier. The value of min hit 

rate determines the positive detection rate of positive samples of each stage. Max false alarm rate means 

maximum error detection for each classifier. The value of weight trimming coefficient will make the 

training process focus more on the samples that cannot be correctly classified, therefore, improve the 

training efficiency. Besides the parameters mentioned above, we will set the initialization weights of all 

samples to be equal. Last but not the least, the types of Haar features used in the training include vertical 

features and 45-degree rotation features. 

Table1 shows the settings for the parameters of Haar classifier1. 

Table1. Parameters setting of haar classifier1. 

Parameters Value 

Number of stages  18 

Number of splits 2 

Min hit rate 0.995 

Max false alarm rate  0.4 

Weight trimming 0.9 

Equal weights TRUE 

Types of Haar features ALL 
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MTCNN There are two different MTCNNs to be trained. We add some batch normalization layers in 

MTCNN1, which were not included in MTCNN2. The activation function of R-NET and O-NET in 

MTCNN1 is sigmoid function; while the activation function in MTCNN2 is softmax function. 

Table 2. Parameters setting of haar classifier2. 

Parameters Value 

Number of stages  18 

Number of splits 2 

Min hit rate 0.995 

Max false alarm rate  0.5 

Weight trimming 0.95 

Equal weights TRUE 

Types of Haar features ALL 

 
Table 3 shows the settings for the parameters of Haar classifier3. 

Table 3. Parameters setting of haar classifier3. 

Parameters Value  

Number of stages  20  

Number of splits 2  

Min hit rate 0.995  

Max false alarm rate  0.5  

Weight trimming 0.95  

Equal weights TRUE  

Types of Haar features ALL  

 

Table 4 shows the settings for the parameters of Haar classifier4. 

Table 4. Parameters setting of haar classifier4 

Parameters Value 

Number of stages  15 

Number of splits 2 

Min hit rate 0.995 

Max false alarm rate  0.5 

Weight trimming 0.9 

Equal weights TRUE 

Types of Haar features ALL 
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Table 6 shows the settings for the network structure of MTCNN2. 

Table 5. Network structure of mtcnn1. 

Parameters P-NET R-NET O-NET 

Structure 3 convolutional 

layers,  

1 pooling layers 

3 convolutional 

layers, 1 pooling layers,  

1 fully connected 

layer 

4 convolutional layers, 2 

pooling layers,  

1 fully connected layer 

Number of 

kernels of 

convolutional 

layers 

10, 16, 32 28, 48, 64 32, 64, 128, 128 

Convolutional 

layer kernel size 

(3, 3) (3, 3), (2, 2) (3, 3) 

Convolutional 

layer stride 

(1, 1) (1, 1) (1, 1) 

Pooling layer 

activation 

function 

PReLU PReLU PReLU 

Pooling layer 

kernel size 

(2, 2) (3, 3) (3, 3), (2, 2) 

Pooling layer 

stride 

(2, 2) (2, 2) (2, 2) 

Fully 

connected layer 

size 

---- 128 256 

Normalization BatchNorm2d BatchNorm2d BatchNorm2d 

Activation 

function 

---- Sigmoid Sigmoid 

 

Table 6. Network structure of mtcnn2. 

Parameters P-NET R-NET O-NET 

Structure 3 convolutional 

layers,  

1 pooling layers 

3 convolutional 

layers, 1 pooling 

layers,  

1 fully 

connected layer 

4 convolutional 

layers, 2 pooling 

layers,  

1 fully 

connected layer 

Number of kernels of 

convolutional layers 

10, 16, 32 28, 48, 64 32, 64, 128, 128 

Convolutional layer 

kernel size 

(3, 3) (3, 3), (2, 2) (3, 3) 

Convolutional layer stride (1, 1) (1, 1) (1, 1) 

Pooling layer activation 

function 

PReLU PReLU PReLU 

Pooling layer kernel size (2, 2) (3, 3) (3, 3), (2, 2) 

Pooling layer stride (2, 2) (2, 2) (2, 2) 

Fully connected layer size ---- 128 256 

Normalization ---- ---- ---- 

Activation function ---- Softmax Softmax 

 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023315

512



 

 

 

 

 

 

4.  Experimental Discussion 

4.1.  Dataset 

The training dataset we used in our experiment is WIDER Face Dataset, which is published by the 

Chinese University of Hong Kong in 2015. It contains 32,203 images and 393,703 faces, with great 

changes in face size, posture, occlusion, expression, makeup and illumination. Since its release, it has 

been widely used in the evaluation of convolutional neural networks with more powerful performance 

than traditional methods. 

4.2.  Experimental Result 

In this part, the best Haar classifier and MTCNN will be selected at first. Then, the face detection 

performance of AdaBoost and MTCNN will be compared and analyzed. To be specific, two experiments 

will be conducted respectively. In the first experiment, we attempt to detect two human faces from an 

interview video clip to test accuracy and detection speed of two models, since in this video, the state of 

human faces is relatively fixed. In the second experiment, a TV drama clip, which contains more human 

faces and the state of faces is more random, is used to measure some important performance indicators 

of two models. 

The detection results of four Haar classifiers are shown in Table 7. 

As shown in Table 7, classifier3 has the highest accuracy on both interview clip and drama clip, which 

demonstrates that classifier with higher number of stages and larger value of max false alarm rate and 

weight trimming coefficient is conducive to implement a better face detection performance. In this case, 

classifier3 will be selected as the representation of the best face detection performance of AdaBoost.  

The detection results of two MTCNNs are shown in Table 8. 

By appending batch normalization layers to the network and replacing softmax function with sigmoid, 

MTCNN1 owns better accuracy than MTCNN2. Therefore, we’re going to choose MTCNN1 as the 

representation of MTCNN. 

To compare the face detection performance of classifier3 and MTCNN1, the accuracy and frame per 

second (FPS) of two methods have been calculated. The detection results of the interview clip are shown 

in Table 9. 

The detection results of the drama clip are shown in Table 10. 

Table 7. Accuracy of the classifiers. 

Video Classifier1 Classifier2 Classifier3 Classifier4 

Interview Clip 77.01% 80.02% 81.92%   13.17% 

Drama Clip 59.14% 62.15% 64.99% 6.78% 

 

Table 8. Accuracy of the mtcnns. 

Video MTCNN1 MTCNN2 

Interview Clip 98.10% 96.28% 

Drama Clip 90.56% 88.62% 

 

Table 9. the detection results of the interview clip 

Index MTCNN1 CLASSIFIER3 

Accuracy 98.10% 81.92% 

FPS 9.92 10.43 
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According to TABLEⅨ, we can come to a conclusion that the face detection accuracy of MTCNN1 is 

much better than classifier3 because MTCNN can find the most accurate bounding box from hundreds 

of proposal boxes after processing by three networks. Whereas, AdaBoost method will accept all 

proposal faces and not eliminate the wrong bounding boxes that we can see from figure 6. 

By contrast, AdaBoost method has a better FPS than MTCNN since it doesn’t have such a complicated 

structure as MTCNN. Therefore, AdaBoost classifier doesn’t need to consume a significant amount of 

time to find faces in videos. 

5.  Conclusion 

To conclude, this paper intended to find a best approach to implement video-based face detection by 

comparing the performance of conventional methods and deep learning. We selected the most 

representative method in both conventional methods and deep learning, namely AdaBoost and MTCNN. 

Final discussions were made of the comparisons between the best AdaBoost classifier and the best 

MTCNN structure in detecting faces from video resources. From the discussion, the conclusion can be 

reached that the face detection accuracy of MTCNN is more adequate than AdaBoost’s; while AdaBoost 

is faster than MTCNN due to its simpler framework. Our experimental results could provide promising 

insights into the research of face detection under the context of resource constraints. 

This research, however, is subject to several limitations. We only implement video-based face 

detection with low computing power scenario. To achieve higher precision and efficiency, this 

experiment can be conducted in high-performance devices. Moreover, we only compared a portion of 

methods and trained a limited number of classifiers and networks in this research, which could lead to 

further discussions of various of methods. Future research should consider the potential applications of 

video-based face detection such as security system and image search. We highly recommend researchers 

combine convolutional methods and deep learning to create a method with prominent accuracy as well 

as fast speed. 
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