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Abstract: Programming language translation is essential in modern software development, 

facilitating cross-platform compatibility and the adaptation of legacy systems. This study 

examines the performance of large language models (LLMs), such as ChatGPT, in Python-

to-Java code translation. Using a dataset of ten diverse algorithmic problems and advanced 

prompt engineering techniques, we evaluate the models’ effectiveness in maintaining 

computational accuracy (CA) and preserving method correctness (PMC). Results indicate 

that LLMs perform well on standard tasks but encounter challenges in complex scenarios 

involving advanced data structures and recursion. These findings uncover the potential of 

LLMs in code translation while highlighting the need for improved prompt strategies and 

domain-specific fine-tuning for complex tasks. 

Keywords: Large Language Models, Code Translation, Python-to-Java, Prompt Engineering, 

ChatGPT 

1. Introduction 

Large Language Models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional 

capabilities in code analysis, demonstrating a deep understanding of code semantics and functionality. 

These models, leveraging their advanced natural language processing abilities, are increasingly 

applied to code generation, debugging, and translation tasks [1]. This progress highlights the potential 

of LLMs to transform software development processes, making them more efficient and scalable. 

Code migration and translation between programming languages are crucial tasks in software 

development. They significantly reduce development cycles, improve code compatibility across 

platforms, and facilitate the integration of heterogeneous systems [2]. Efficient language translation 

enables developers to adapt legacy systems to modern frameworks and streamline cross-language 

collaboration. However, automating this process is challenging due to the structural and syntactic 

differences among programming languages [3]. Despite the promising advancements in LLMs, 

current research on leveraging these models for programming language translation remains limited. 

Existing studies often fail to comprehensively evaluate the effectiveness of LLMs in language 

translation tasks. For instance, while neural machine translation (NMT) methods show potential, their 

applicability to code translation tasks, particularly with large-scale models like GPT-4, is 

underexplored [4]. Additionally, many studies generalize their findings without considering task-

specific challenges, such as handling edge cases or adhering to language-specific conventions, 

leading to oversimplified evaluations [5]. 
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To address these challenges, this work systematically investigates the performance of LLMs in 

programming language translation, using Python-to-Java translation as a case study. We begin by 

reviewing existing literature on intelligent language translation and identifying current bottlenecks in 

research. Subsequently, we design a dataset comprising ten diverse algorithmic problems, carefully 

selected to cover a broad spectrum of complexities and computational paradigms. To ensure fairness 

in evaluation, we employ various prompt engineering strategies tailored to the characteristics of 

different tasks. Finally, we evaluate the translation outcomes by assessing both the functionality and 

quality of the translated code through comprehensive validation metrics. Our experiments 

demonstrate that LLMs, exemplified by ChatGPT, exhibit promising capabilities in programming 

language translation. For most tasks, the model achieves high accuracy and functional alignment 

between source and target code. However, certain scenarios, such as handling advanced data 

structures or recursive algorithms, reveal areas for improvement. These findings uncover the potential 

of LLMs in automating language translation while emphasizing the importance of refining prompt 

engineering techniques to address task-specific challenges. 

2. Background 

2.1. LLMs and ChatGPT 

Large Language Models (LLMs), such as GPT-3 and GPT-4, represent significant advancements in 

natural language processing. These models, which utilize billions of parameters, excel at handling 

complex tasks like text generation, translation, and summarization. Built on the Transformer 

architecture, they demonstrate exceptional capability in generating coherent responses during multi-

turn dialogues. Increasingly, LLMs are being applied in software development tasks such as code 

generation, debugging, and translation across different programming languages, underscoring their 

growing impact across various fields [6]. Recent advancements have also demonstrated these models’ 

ability to understand and generate domain-specific languages, further expanding their applications in 

technical fields like software engineering and data science [7]. 

2.2. Language Translation: Related Work 

Research on code translation has traditionally focused on both rule-based and AI-based methods, such 

as neural machine translation (NMT). For instance, Chen et al. investigated sequence-to-sequence 

models for code translation, highlighting the challenges of maintaining syntactic and semantic 

integrity [8]. Similarly, Weisz et al. compared AI-supported code translation with traditional methods, 

noting that while neural models show promise, they often struggle with correctness and coherence, 

particularly in task-specific contexts [9]. 

However, many studies have not fully examined the impact of LLMs like GPT-3 and GPT-4 on 

code translation. Research by White et al. and Ahmed et al. suggests that the size and training data of 

LLMs significantly influence translation quality. Yet, these factors remain underexplored in 

comparative evaluations [10][11]. Furthermore, such studies often generalize findings without 

addressing task-specific nuances, such as error handling or language-specific idioms, which results 

in oversimplified evaluations [12]. This underscores the need for research that considers the diverse 

requirements of various programming contexts. Future studies should focus on integrating fine-tuning 

and prompt engineering to enhance LLM adaptability and accuracy in specific scenarios, while 

employing detailed benchmarks to account for task complexity and diversity [13]. 
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3. Approach 

3.1. Workflow 

 

Figure 1: Thesis Workflow Diagram. 

Module 1 (Show in Fig.1) - Pre-chat Module - The initial phase of the workflow focuses on collecting 

a diverse set of algorithmic problems as the foundation for subsequent processing. This involves 

carefully selecting 10 algorithmic datasets from reliable sources, ensuring they encompass a variety 

of types and complexities. The objective is to establish a robust test set that comprehensively 

evaluates the model’s capabilities in code translation and evaluation. To ensure the input code is 

suitable for evaluation, the collected data must be pre-processed using strategies such as format 

standardization, redundancy removal, and syntax validation. 

Module 2: In-chat Module - After preparing Python code snippets, the LLM is employed to 

perform the translation from Python to Java. The key aspect here is the use of carefully crafted 

prompts to enhance the translation results. The cleaned Python code, along with the designed prompts, 

serves as the input, and the model generates the translated Java code as the output, which is then 

refined and validated in subsequent steps. 

Module 3: Post-chat Module - The post-processing phase evaluates the quality and functionality 

of the translated output through rigorous syntax and semantic checks. Additionally, various metrics, 

such as robustness and adherence to coding standards, are assessed. The validated Java code is then 

compared to its original Python counterpart to ensure accuracy and consistency. 

3.2. Prompt Engineering 

Four types of prompts were developed and universally applied across the dataset (shown in Table 1) 

to capture different aspects of code translation, such as syntax preservation, recursive structures, data 

handling, and complex logic processing. 

Table 1: Prompt Engineering Methods Applied in the Translation. 

Method Description Prompt Template Example 

Direct Translation 

Prompt 

For simple tasks like array operations or 

conditionals; provides basic instructions 

for direct translation. 

“Translate the following 

Python code into Java.” 

Contextual Prompt 

with Algorithm 

Description 

For moderately complex tasks; includes a 

brief algorithm description to help retain 

structure and logic. 

“Translate this algorithm 

while preserving its recursive 

structure and logic.” 

Detailed Instruction 

Prompt 

For complex tasks; provides specific Java 

instructions (e.g., data structures, imports) 

to ensure accuracy. 

“Translate this code and 

replace Python’s heapq with 

Java’s PriorityQueue class.” 
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Chain-of-Thought 

Prompting 

For complex tasks; breaks translation into 

segments, guiding the model through each 

part while retaining context. 

“Translate this function 

independently, then proceed 

to the next segment using the 

prior output.” 

 

To implement prompt engineering and improve the generated outputs, several optimization 

strategies were employed: 

1) Iterative Refinement: When the initial translation exhibited errors or omissions, prompts were 

iteratively refined by specifying missing details or requesting adjustments. This strategy ensured 

that model responses were tailored to correct discrepancies without altering the core logic of the 

original algorithm. 

2) Error Detection: In cases of functional errors, the prompts were adjusted to target logical 

inconsistencies, such as those in recursion or array manipulation. This ensured that the translated 

Java code was functionally accurate. 

3) Naming Consistency: Structured naming conventions were embedded in the prompts to prevent 

inconsistencies across segments of each translated algorithm. Each prompt specified standardized 

variable and function names, ensuring cohesive naming throughout the translation and avoiding 

parameter mismatches between interconnected functions. 

3.3. Code Validation 

To ensure that the Java code is both syntactically and semantically aligned with the original Python 

code, two types of validations were conducted: 

1) Syntax Checking: Each Java snippet generated by the model underwent syntax validation to 

ensure compliance with Java programming standards. This step eliminated potential errors 

arising from language differences between Python and Java, such as indentation-based 

structuring versus block-based syntax. 

2) Semantic Verification: Beyond syntax, the semantic accuracy of each translation was examined 

to confirm that the core logic and algorithmic flow were consistent with the original Python code. 

This process ensured that essential elements, such as loops, recursive structures, and conditionals, 

were accurately represented in Java. 

4. Evaluation 

4.1. Datasets 

To comprehensively evaluate the performance of large language models (LLMs) in code translation 

tasks, we designed a dataset comprising 10 representative algorithmic problems, selected for their 

diversity in complexity and computational paradigms. These tasks were carefully chosen to ensure 

fairness, objectivity, and validity in assessing the model’s ability to translate between Python and 

Java. The dataset encompasses a range of algorithmic categories, including basic search algorithms, 

recursive divide-and-conquer methods, dynamic programming, graph traversal, and optimization 

techniques. The problems were sourced from publicly available resources, including open-source 

repositories such as GitHub and widely referenced algorithm textbooks, ensuring transparency and 

reproducibility of the experiments. Additionally, the selected algorithms strike a balance between 

simplicity and complexity, capturing both straightforward translation challenges (e.g., condition 

handling and array operations) and advanced tasks involving recursion, dynamic programming, and 

Table 1: (continued). 
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graph structures. This variety in task selection provides a broad and objective assessment of the 

LLM’s translation capabilities. 

Table 2: Descriptions of Collected Algorithms 

ID Algorithm Complexity Reason for Selection 

1 Binary Search Basic 
Evaluates condition handling and array 

manipulation. 

2 
Fibonacci Sequence 

(Dynamic Programming) 
Basic Assesses recursion and memoization. 

3 Quick Sort Medium Tests recursion and partition logic. 

4 Merge Sort Medium 
Evaluates recursion and divide-and-

conquer techniques. 

5 Breadth-First Search (BFS) Medium 
Tests graph traversal and queue 

operations. 

6 Depth-First Search (DFS) Medium Assesses recursion and graph traversal. 

7 Matrix Multiplication Medium Tests matrix operations and indexing. 

8 Knapsack Problem (0-1) High 
Assesses dynamic programming and 

optimization. 

9 Dijkstra’s Algorithm High 
Evaluates graph-based shortest path 

algorithms. 

10 
Longest Increasing 

Subsequence (LIS) 
High 

Tests dynamic programming and 

memoization. 

4.2. Metrics 

Two primary metrics are used to evaluate the effectiveness of the target LLMs: 

Computational Accuracy (CA): CA =
Nm

N
 

Where Nm  is the number of correctly translated test cases and N is the total number of test cases. 

Higher CA values indicate a closer match between the behavior of the original and translated code 

across multiple input scenarios. CA directly reflects the functional correctness of the translation, 

ensuring that the core logic of the algorithm is preserved. 

Proportion of Correctly Translated Methods (PCM): PCM =
𝑁𝑝

𝑁
 

where NP is the number of methods in the translated Java code that pass unit testing without 

requiring any manual modifications, and N is the total number of methods in the original Python 

code. PCM focuses on whether the generated code performs the intended algorithmic task correctly 

without requiring further refinement. 

4.3. Results 

4.3.1. Quantitative Analysis 

From the results shown in Fig.2, for simpler algorithms, such as Binary Search and the Fibonacci 

Sequence, the CA score reached a perfect 1.0, demonstrating the model’s effectiveness in maintaining 

algorithmic integrity with minimal complexity. As algorithmic complexity increased, the CA scores 

exhibited a slight decline. For medium-complexity tasks, such as Quick Sort, Merge Sort, and 

Breadth-First Search (BFS), CA scores remained relatively high, ranging from 0.95 to 0.98. This 

suggests that, while the model generally captured the core logic of these algorithms, it occasionally 

exhibited minor discrepancies in handling specific edge cases, such as partition logic in Quick Sort 
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and recursion handling in Depth-First Search (DFS). For more complex tasks, such as the Knapsack 

Problem, Dijkstra’s Algorithm, and Longest Increasing Subsequence (LIS), CA scores decreased to 

an average of around 0.90. These lower scores indicate the challenges in translating sophisticated 

structures, such as dynamic programming and graph-based shortest path calculations, where small 

translation errors can significantly impact the final output. As for the PCM, which is essential for 

assessing practical usability, the results demonstrate similar trends. For straightforward tasks like 

Binary Search and the Fibonacci Sequence, PCM scores reached a perfect 1.0. This reflects the 

model’s ability to produce Java code that fully meets the intended functionality without any manual 

modifications. In tasks with medium complexity, such as Quick Sort and Merge Sort, PCM scores 

ranged from 0.90 to 0.95. While most functions in these algorithms were accurately translated, 

occasional issues with recursion and function calls necessitated minor adjustments. For complex tasks, 

particularly those involving advanced data structures and optimization techniques (e.g., Dijkstra’s 

Algorithm and the Knapsack Problem), PCM scores averaged around 0.84. The lower scores highlight 

the model’s limitations in handling intricate algorithmic elements, such as managing priority queues 

in Dijkstra’s Algorithm and maintaining state consistency in dynamic programming. These tasks were 

more likely to require post-processing to fully align with Java’s functional expectations. 

 

Figure 2: Translation Performance Reflected by CA and PCM 

In summary, the quantitative results reveal that the LLM demonstrates robust performance in 

translating basic and intermediate algorithms from Python to Java, achieving high CA and PCM 

scores. However, as task complexity increases, both CA and PCM scores exhibit a gradual decline, 

especially for algorithms involving dynamic programming and advanced graph traversal. This trend 

highlights the model’s strengths in translating simpler algorithmic patterns but also indicates its 

limitations in addressing more intricate logic and structural dependencies. These findings suggest that 

while large language models (LLMs) can effectively translate a range of algorithmic tasks, further 

improvements in translation accuracy are necessary for complex algorithms. The results underscore 

the importance of refining prompt engineering and exploring other translation optimization 

techniques to enhance the model’s performance in more challenging scenarios. 

4.3.2. Impact of Prompt Engineering 

To investigate the role of prompt engineering in code translation accuracy, we analyzed the 

performance of four distinct prompt methods—Direct Translation Prompt, Contextual Prompt with 

Algorithm Description, Detailed Instruction Prompt, and Step-by-Step Prompting—across tasks of 
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varying complexity. Each prompt method was evaluated for its effectiveness in handling tasks with 

different levels of algorithmic intricacy, and examples were provided to illustrate key observations. 

1) Direct Translation Prompt: For simpler algorithmic tasks, such as Binary Search and Fibonacci 

Sequence, the Direct Translation Prompt produced highly consistent results. The model generated 

accurate Java translations without requiring elaborate instructions. This finding suggests that, for 

basic tasks, a straightforward translation prompt is sufficient, as the model can infer standard 

language transformations (e.g., handling conditionals and loops) with minimal guidance. However, 

as tasks increased in complexity, the limitations of Direct Translation Prompts became apparent. For 

instance, when applied to medium-complexity algorithms like Merge Sort and Quick Sort, the model 

often failed to capture essential details of recursive structures, leading to incorrect partitioning or 

incomplete recursion logic. This result implies that, as task complexity rises, Direct Translation 

Prompts may lack the specificity needed to ensure functional consistency in the output. Example: 

When translating Merge Sort using a Direct Translation Prompt, the model occasionally generated 

code with missing base cases or recursive calls, resulting in an incomplete sorting function. 

2) Contextual Prompt with Algorithm Description: For tasks of moderate complexity, such as 

Divide-and-Conquer and Graph Traversal algorithms (e.g., Depth-First Search (DFS) and Breadth-

First Search (BFS)), adding contextual information through a brief algorithm description improved 

translation accuracy. By specifying that the algorithm involves recursion or graph traversal, the model 

better retained essential structures, such as function calls and recursive depth. However, in complex 

tasks, this type of prompt sometimes produced partial translations, with key details omitted—

particularly in cases requiring intricate recursive functions or multiple nested operations. This finding 

suggests that, while contextual prompts add value, they may not fully address the depth of logic 

needed for more advanced algorithms. Example: For BFS, the Contextual Prompt with an algorithm 

description resulted in code with accurate queue-based traversal, maintaining functional integrity. 

However, for more complex tasks, such as Dijkstra’s Algorithm, this prompt type occasionally 

produced translations that lacked complete pathfinding logic. 

3) Detailed Instruction Prompt: Detailed Instruction Prompts proved particularly valuable for high-

complexity tasks, such as dynamic programming and custom data structure algorithms (e.g., the 

Knapsack Problem and Dijkstra’s Algorithm). By including specific details (e.g., specifying data 

structures like PriorityQueue in Java or suggesting memory management practices), the model was 

better equipped to generate functional and syntactically accurate code for complex tasks. Nevertheless, 

certain limitations persisted even with detailed instructions. For tasks with extensive 

interdependencies (e.g., recursive calls combined with custom data structures), the model 

occasionally introduced logical inconsistencies, particularly when handling complex conditional 

statements or resource management. Example: For the Knapsack Problem, using a Detailed 

Instruction Prompt guided the model in applying dynamic programming techniques, resulting in code 

that preserved the core logic of the algorithm. However, in scenarios where memory usage required 

close monitoring, the output sometimes included redundant data structures that necessitated further 

refinement. 

4) Chain-of-Thought Prompting: Chain-of-Thought Prompting proved to be an effective strategy 

for managing high-complexity tasks, particularly those involving multiple interdependent functions, 

such as Dijkstra’s Algorithm and Matrix Multiplication. By breaking these tasks into logically 

connected smaller components and addressing each step incrementally, this approach facilitated a 

structured translation process that enhanced the model’s ability to maintain accuracy and coherence. 

Each segment was translated with careful attention to detail, resulting in code that was both logically 

consistent and structurally sound. However, a limitation of this strategy emerged when applied to 

particularly large or intricate algorithms. As the translation process extended across multiple 

iterations, the model occasionally lost context from earlier prompts. This loss of context resulted in 
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inconsistencies in variable naming, function calls, or parameter structures between sections. While 

Chain-of-Thought Prompting effectively manages complexity, it also exposes the model’s challenges 

in maintaining global context over extended sequences of prompts. Example: In Dijkstra’s Algorithm, 

Chain-of-Thought Prompting enabled accurate translation of individual function segments, such as 

initializing distances, updating the priority queue, and handling graph traversal. However, 

inconsistencies in variable naming and function dependencies across segments required manual 

adjustments to ensure overall consistency. 

The analysis reveals that prompt engineering plays a critical role in achieving accurate code 

translations, especially for complex algorithmic tasks: 

Simple Tasks: Direct Translation Prompts and Contextual Prompts perform adequately, as the 

model can handle standard logic without additional guidance. 

Moderate Complexity Tasks: Contextual and Detailed Prompts enhance performance by helping 

the model retain important structural and functional details. 

High Complexity Tasks: Chain-of-Thought Prompting is essential, as it incrementally guides the 

model through complex logic. However, careful management is required to maintain context 

throughout the process. 

These findings underscore the importance of sophisticated and tailored prompt engineering 

strategies as task complexity increases, highlighting that a more nuanced approach to prompt design 

significantly improves the model’s translation performance. 

5. Conclusion 

This study systematically investigated the performance of large language models (LLMs), focusing 

on Python-to-Java code translation, to evaluate their effectiveness in programming language 

migration tasks. By constructing a dataset comprising ten representative algorithmic problems and 

employing various prompt engineering strategies, the research provided a comprehensive assessment 

of the translation capabilities of LLMs, exemplified by ChatGPT. The results demonstrate that LLMs 

exhibit strong overall performance, achieving high accuracy and functional alignment in most tasks, 

thereby highlighting their potential in automated code generation and translation. However, certain 

limitations in handling complex scenarios were also identified, providing constructive suggestions 

for LLM-based language translation. Future research focuses on the development of more 

sophisticated prompt engineering techniques to better capture complex logic and language-specific 

nuances, while the integration of fine-tuning and domain adaptation can be adopted to improve model 

generalization in specialized contexts. 
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