
A Study on ChatGPT-Based Code Translation from Python
to Java

Xiling Gao1,a,*

1Beijing University of Posts and Telecommunications, Beijing, 100876, China

a. 2467527299@qq.com

*corresponding author

Abstract: Programming language translation is essential in modern software development,

facilitating cross-platform compatibility and the adaptation of legacy systems. This study

examines the performance of large language models (LLMs), such as ChatGPT, in Python-

to-Java code translation. Using a dataset of ten diverse algorithmic problems and advanced

prompt engineering techniques, we evaluate the models’ effectiveness in maintaining

computational accuracy (CA) and preserving method correctness (PMC). Results indicate

that LLMs perform well on standard tasks but encounter challenges in complex scenarios

involving advanced data structures and recursion. These findings uncover the potential of

LLMs in code translation while highlighting the need for improved prompt strategies and

domain-specific fine-tuning for complex tasks.

Keywords: Large Language Models, Code Translation, Python-to-Java, Prompt Engineering,

ChatGPT

1. Introduction

Large Language Models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional

capabilities in code analysis, demonstrating a deep understanding of code semantics and functionality.

These models, leveraging their advanced natural language processing abilities, are increasingly

applied to code generation, debugging, and translation tasks [1]. This progress highlights the potential

of LLMs to transform software development processes, making them more efficient and scalable.

Code migration and translation between programming languages are crucial tasks in software

development. They significantly reduce development cycles, improve code compatibility across

platforms, and facilitate the integration of heterogeneous systems [2]. Efficient language translation

enables developers to adapt legacy systems to modern frameworks and streamline cross-language

collaboration. However, automating this process is challenging due to the structural and syntactic

differences among programming languages [3]. Despite the promising advancements in LLMs,

current research on leveraging these models for programming language translation remains limited.

Existing studies often fail to comprehensively evaluate the effectiveness of LLMs in language

translation tasks. For instance, while neural machine translation (NMT) methods show potential, their

applicability to code translation tasks, particularly with large-scale models like GPT-4, is

underexplored [4]. Additionally, many studies generalize their findings without considering task-

specific challenges, such as handling edge cases or adhering to language-specific conventions,

leading to oversimplified evaluations [5].

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

26

To address these challenges, this work systematically investigates the performance of LLMs in

programming language translation, using Python-to-Java translation as a case study. We begin by

reviewing existing literature on intelligent language translation and identifying current bottlenecks in

research. Subsequently, we design a dataset comprising ten diverse algorithmic problems, carefully

selected to cover a broad spectrum of complexities and computational paradigms. To ensure fairness

in evaluation, we employ various prompt engineering strategies tailored to the characteristics of

different tasks. Finally, we evaluate the translation outcomes by assessing both the functionality and

quality of the translated code through comprehensive validation metrics. Our experiments

demonstrate that LLMs, exemplified by ChatGPT, exhibit promising capabilities in programming

language translation. For most tasks, the model achieves high accuracy and functional alignment

between source and target code. However, certain scenarios, such as handling advanced data

structures or recursive algorithms, reveal areas for improvement. These findings uncover the potential

of LLMs in automating language translation while emphasizing the importance of refining prompt

engineering techniques to address task-specific challenges.

2. Background

2.1. LLMs and ChatGPT

Large Language Models (LLMs), such as GPT-3 and GPT-4, represent significant advancements in

natural language processing. These models, which utilize billions of parameters, excel at handling

complex tasks like text generation, translation, and summarization. Built on the Transformer

architecture, they demonstrate exceptional capability in generating coherent responses during multi-

turn dialogues. Increasingly, LLMs are being applied in software development tasks such as code

generation, debugging, and translation across different programming languages, underscoring their

growing impact across various fields [6]. Recent advancements have also demonstrated these models’

ability to understand and generate domain-specific languages, further expanding their applications in

technical fields like software engineering and data science [7].

2.2. Language Translation: Related Work

Research on code translation has traditionally focused on both rule-based and AI-based methods, such

as neural machine translation (NMT). For instance, Chen et al. investigated sequence-to-sequence

models for code translation, highlighting the challenges of maintaining syntactic and semantic

integrity [8]. Similarly, Weisz et al. compared AI-supported code translation with traditional methods,

noting that while neural models show promise, they often struggle with correctness and coherence,

particularly in task-specific contexts [9].

However, many studies have not fully examined the impact of LLMs like GPT-3 and GPT-4 on

code translation. Research by White et al. and Ahmed et al. suggests that the size and training data of

LLMs significantly influence translation quality. Yet, these factors remain underexplored in

comparative evaluations [10][11]. Furthermore, such studies often generalize findings without

addressing task-specific nuances, such as error handling or language-specific idioms, which results

in oversimplified evaluations [12]. This underscores the need for research that considers the diverse

requirements of various programming contexts. Future studies should focus on integrating fine-tuning

and prompt engineering to enhance LLM adaptability and accuracy in specific scenarios, while

employing detailed benchmarks to account for task complexity and diversity [13].

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

27

3. Approach

3.1. Workflow

Figure 1: Thesis Workflow Diagram.

Module 1 (Show in Fig.1) - Pre-chat Module - The initial phase of the workflow focuses on collecting

a diverse set of algorithmic problems as the foundation for subsequent processing. This involves

carefully selecting 10 algorithmic datasets from reliable sources, ensuring they encompass a variety

of types and complexities. The objective is to establish a robust test set that comprehensively

evaluates the model’s capabilities in code translation and evaluation. To ensure the input code is

suitable for evaluation, the collected data must be pre-processed using strategies such as format

standardization, redundancy removal, and syntax validation.

Module 2: In-chat Module - After preparing Python code snippets, the LLM is employed to

perform the translation from Python to Java. The key aspect here is the use of carefully crafted

prompts to enhance the translation results. The cleaned Python code, along with the designed prompts,

serves as the input, and the model generates the translated Java code as the output, which is then

refined and validated in subsequent steps.

Module 3: Post-chat Module - The post-processing phase evaluates the quality and functionality

of the translated output through rigorous syntax and semantic checks. Additionally, various metrics,

such as robustness and adherence to coding standards, are assessed. The validated Java code is then

compared to its original Python counterpart to ensure accuracy and consistency.

3.2. Prompt Engineering

Four types of prompts were developed and universally applied across the dataset (shown in Table 1)

to capture different aspects of code translation, such as syntax preservation, recursive structures, data

handling, and complex logic processing.

Table 1: Prompt Engineering Methods Applied in the Translation.

Method Description Prompt Template Example

Direct Translation

Prompt

For simple tasks like array operations or

conditionals; provides basic instructions

for direct translation.

“Translate the following

Python code into Java.”

Contextual Prompt

with Algorithm

Description

For moderately complex tasks; includes a

brief algorithm description to help retain

structure and logic.

“Translate this algorithm

while preserving its recursive

structure and logic.”

Detailed Instruction

Prompt

For complex tasks; provides specific Java

instructions (e.g., data structures, imports)

to ensure accuracy.

“Translate this code and

replace Python’s heapq with

Java’s PriorityQueue class.”

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

28

Chain-of-Thought

Prompting

For complex tasks; breaks translation into

segments, guiding the model through each

part while retaining context.

“Translate this function

independently, then proceed

to the next segment using the

prior output.”

To implement prompt engineering and improve the generated outputs, several optimization

strategies were employed:

1) Iterative Refinement: When the initial translation exhibited errors or omissions, prompts were

iteratively refined by specifying missing details or requesting adjustments. This strategy ensured

that model responses were tailored to correct discrepancies without altering the core logic of the

original algorithm.

2) Error Detection: In cases of functional errors, the prompts were adjusted to target logical

inconsistencies, such as those in recursion or array manipulation. This ensured that the translated

Java code was functionally accurate.

3) Naming Consistency: Structured naming conventions were embedded in the prompts to prevent

inconsistencies across segments of each translated algorithm. Each prompt specified standardized

variable and function names, ensuring cohesive naming throughout the translation and avoiding

parameter mismatches between interconnected functions.

3.3. Code Validation

To ensure that the Java code is both syntactically and semantically aligned with the original Python

code, two types of validations were conducted:

1) Syntax Checking: Each Java snippet generated by the model underwent syntax validation to

ensure compliance with Java programming standards. This step eliminated potential errors

arising from language differences between Python and Java, such as indentation-based

structuring versus block-based syntax.

2) Semantic Verification: Beyond syntax, the semantic accuracy of each translation was examined

to confirm that the core logic and algorithmic flow were consistent with the original Python code.

This process ensured that essential elements, such as loops, recursive structures, and conditionals,

were accurately represented in Java.

4. Evaluation

4.1. Datasets

To comprehensively evaluate the performance of large language models (LLMs) in code translation

tasks, we designed a dataset comprising 10 representative algorithmic problems, selected for their

diversity in complexity and computational paradigms. These tasks were carefully chosen to ensure

fairness, objectivity, and validity in assessing the model’s ability to translate between Python and

Java. The dataset encompasses a range of algorithmic categories, including basic search algorithms,

recursive divide-and-conquer methods, dynamic programming, graph traversal, and optimization

techniques. The problems were sourced from publicly available resources, including open-source

repositories such as GitHub and widely referenced algorithm textbooks, ensuring transparency and

reproducibility of the experiments. Additionally, the selected algorithms strike a balance between

simplicity and complexity, capturing both straightforward translation challenges (e.g., condition

handling and array operations) and advanced tasks involving recursion, dynamic programming, and

Table 1: (continued).

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

29

graph structures. This variety in task selection provides a broad and objective assessment of the

LLM’s translation capabilities.

Table 2: Descriptions of Collected Algorithms

ID Algorithm Complexity Reason for Selection

1 Binary Search Basic
Evaluates condition handling and array

manipulation.

2
Fibonacci Sequence

(Dynamic Programming)
Basic Assesses recursion and memoization.

3 Quick Sort Medium Tests recursion and partition logic.

4 Merge Sort Medium
Evaluates recursion and divide-and-

conquer techniques.

5 Breadth-First Search (BFS) Medium
Tests graph traversal and queue

operations.

6 Depth-First Search (DFS) Medium Assesses recursion and graph traversal.

7 Matrix Multiplication Medium Tests matrix operations and indexing.

8 Knapsack Problem (0-1) High
Assesses dynamic programming and

optimization.

9 Dijkstra’s Algorithm High
Evaluates graph-based shortest path

algorithms.

10
Longest Increasing

Subsequence (LIS)
High

Tests dynamic programming and

memoization.

4.2. Metrics

Two primary metrics are used to evaluate the effectiveness of the target LLMs:

Computational Accuracy (CA): CA =
Nm

N

Where Nm is the number of correctly translated test cases and N is the total number of test cases.

Higher CA values indicate a closer match between the behavior of the original and translated code

across multiple input scenarios. CA directly reflects the functional correctness of the translation,

ensuring that the core logic of the algorithm is preserved.

Proportion of Correctly Translated Methods (PCM): PCM =
𝑁𝑝

𝑁

where NP is the number of methods in the translated Java code that pass unit testing without

requiring any manual modifications, and N is the total number of methods in the original Python

code. PCM focuses on whether the generated code performs the intended algorithmic task correctly

without requiring further refinement.

4.3. Results

4.3.1. Quantitative Analysis

From the results shown in Fig.2, for simpler algorithms, such as Binary Search and the Fibonacci

Sequence, the CA score reached a perfect 1.0, demonstrating the model’s effectiveness in maintaining

algorithmic integrity with minimal complexity. As algorithmic complexity increased, the CA scores

exhibited a slight decline. For medium-complexity tasks, such as Quick Sort, Merge Sort, and

Breadth-First Search (BFS), CA scores remained relatively high, ranging from 0.95 to 0.98. This

suggests that, while the model generally captured the core logic of these algorithms, it occasionally

exhibited minor discrepancies in handling specific edge cases, such as partition logic in Quick Sort

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

30

and recursion handling in Depth-First Search (DFS). For more complex tasks, such as the Knapsack

Problem, Dijkstra’s Algorithm, and Longest Increasing Subsequence (LIS), CA scores decreased to

an average of around 0.90. These lower scores indicate the challenges in translating sophisticated

structures, such as dynamic programming and graph-based shortest path calculations, where small

translation errors can significantly impact the final output. As for the PCM, which is essential for

assessing practical usability, the results demonstrate similar trends. For straightforward tasks like

Binary Search and the Fibonacci Sequence, PCM scores reached a perfect 1.0. This reflects the

model’s ability to produce Java code that fully meets the intended functionality without any manual

modifications. In tasks with medium complexity, such as Quick Sort and Merge Sort, PCM scores

ranged from 0.90 to 0.95. While most functions in these algorithms were accurately translated,

occasional issues with recursion and function calls necessitated minor adjustments. For complex tasks,

particularly those involving advanced data structures and optimization techniques (e.g., Dijkstra’s

Algorithm and the Knapsack Problem), PCM scores averaged around 0.84. The lower scores highlight

the model’s limitations in handling intricate algorithmic elements, such as managing priority queues

in Dijkstra’s Algorithm and maintaining state consistency in dynamic programming. These tasks were

more likely to require post-processing to fully align with Java’s functional expectations.

Figure 2: Translation Performance Reflected by CA and PCM

In summary, the quantitative results reveal that the LLM demonstrates robust performance in

translating basic and intermediate algorithms from Python to Java, achieving high CA and PCM

scores. However, as task complexity increases, both CA and PCM scores exhibit a gradual decline,

especially for algorithms involving dynamic programming and advanced graph traversal. This trend

highlights the model’s strengths in translating simpler algorithmic patterns but also indicates its

limitations in addressing more intricate logic and structural dependencies. These findings suggest that

while large language models (LLMs) can effectively translate a range of algorithmic tasks, further

improvements in translation accuracy are necessary for complex algorithms. The results underscore

the importance of refining prompt engineering and exploring other translation optimization

techniques to enhance the model’s performance in more challenging scenarios.

4.3.2. Impact of Prompt Engineering

To investigate the role of prompt engineering in code translation accuracy, we analyzed the

performance of four distinct prompt methods—Direct Translation Prompt, Contextual Prompt with

Algorithm Description, Detailed Instruction Prompt, and Step-by-Step Prompting—across tasks of

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

31

varying complexity. Each prompt method was evaluated for its effectiveness in handling tasks with

different levels of algorithmic intricacy, and examples were provided to illustrate key observations.

1) Direct Translation Prompt: For simpler algorithmic tasks, such as Binary Search and Fibonacci

Sequence, the Direct Translation Prompt produced highly consistent results. The model generated

accurate Java translations without requiring elaborate instructions. This finding suggests that, for

basic tasks, a straightforward translation prompt is sufficient, as the model can infer standard

language transformations (e.g., handling conditionals and loops) with minimal guidance. However,

as tasks increased in complexity, the limitations of Direct Translation Prompts became apparent. For

instance, when applied to medium-complexity algorithms like Merge Sort and Quick Sort, the model

often failed to capture essential details of recursive structures, leading to incorrect partitioning or

incomplete recursion logic. This result implies that, as task complexity rises, Direct Translation

Prompts may lack the specificity needed to ensure functional consistency in the output. Example:

When translating Merge Sort using a Direct Translation Prompt, the model occasionally generated

code with missing base cases or recursive calls, resulting in an incomplete sorting function.

2) Contextual Prompt with Algorithm Description: For tasks of moderate complexity, such as

Divide-and-Conquer and Graph Traversal algorithms (e.g., Depth-First Search (DFS) and Breadth-

First Search (BFS)), adding contextual information through a brief algorithm description improved

translation accuracy. By specifying that the algorithm involves recursion or graph traversal, the model

better retained essential structures, such as function calls and recursive depth. However, in complex

tasks, this type of prompt sometimes produced partial translations, with key details omitted—

particularly in cases requiring intricate recursive functions or multiple nested operations. This finding

suggests that, while contextual prompts add value, they may not fully address the depth of logic

needed for more advanced algorithms. Example: For BFS, the Contextual Prompt with an algorithm

description resulted in code with accurate queue-based traversal, maintaining functional integrity.

However, for more complex tasks, such as Dijkstra’s Algorithm, this prompt type occasionally

produced translations that lacked complete pathfinding logic.

3) Detailed Instruction Prompt: Detailed Instruction Prompts proved particularly valuable for high-

complexity tasks, such as dynamic programming and custom data structure algorithms (e.g., the

Knapsack Problem and Dijkstra’s Algorithm). By including specific details (e.g., specifying data

structures like PriorityQueue in Java or suggesting memory management practices), the model was

better equipped to generate functional and syntactically accurate code for complex tasks. Nevertheless,

certain limitations persisted even with detailed instructions. For tasks with extensive

interdependencies (e.g., recursive calls combined with custom data structures), the model

occasionally introduced logical inconsistencies, particularly when handling complex conditional

statements or resource management. Example: For the Knapsack Problem, using a Detailed

Instruction Prompt guided the model in applying dynamic programming techniques, resulting in code

that preserved the core logic of the algorithm. However, in scenarios where memory usage required

close monitoring, the output sometimes included redundant data structures that necessitated further

refinement.

4) Chain-of-Thought Prompting: Chain-of-Thought Prompting proved to be an effective strategy

for managing high-complexity tasks, particularly those involving multiple interdependent functions,

such as Dijkstra’s Algorithm and Matrix Multiplication. By breaking these tasks into logically

connected smaller components and addressing each step incrementally, this approach facilitated a

structured translation process that enhanced the model’s ability to maintain accuracy and coherence.

Each segment was translated with careful attention to detail, resulting in code that was both logically

consistent and structurally sound. However, a limitation of this strategy emerged when applied to

particularly large or intricate algorithms. As the translation process extended across multiple

iterations, the model occasionally lost context from earlier prompts. This loss of context resulted in

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

32

inconsistencies in variable naming, function calls, or parameter structures between sections. While

Chain-of-Thought Prompting effectively manages complexity, it also exposes the model’s challenges

in maintaining global context over extended sequences of prompts. Example: In Dijkstra’s Algorithm,

Chain-of-Thought Prompting enabled accurate translation of individual function segments, such as

initializing distances, updating the priority queue, and handling graph traversal. However,

inconsistencies in variable naming and function dependencies across segments required manual

adjustments to ensure overall consistency.

The analysis reveals that prompt engineering plays a critical role in achieving accurate code

translations, especially for complex algorithmic tasks:

Simple Tasks: Direct Translation Prompts and Contextual Prompts perform adequately, as the

model can handle standard logic without additional guidance.

Moderate Complexity Tasks: Contextual and Detailed Prompts enhance performance by helping

the model retain important structural and functional details.

High Complexity Tasks: Chain-of-Thought Prompting is essential, as it incrementally guides the

model through complex logic. However, careful management is required to maintain context

throughout the process.

These findings underscore the importance of sophisticated and tailored prompt engineering

strategies as task complexity increases, highlighting that a more nuanced approach to prompt design

significantly improves the model’s translation performance.

5. Conclusion

This study systematically investigated the performance of large language models (LLMs), focusing

on Python-to-Java code translation, to evaluate their effectiveness in programming language

migration tasks. By constructing a dataset comprising ten representative algorithmic problems and

employing various prompt engineering strategies, the research provided a comprehensive assessment

of the translation capabilities of LLMs, exemplified by ChatGPT. The results demonstrate that LLMs

exhibit strong overall performance, achieving high accuracy and functional alignment in most tasks,

thereby highlighting their potential in automated code generation and translation. However, certain

limitations in handling complex scenarios were also identified, providing constructive suggestions

for LLM-based language translation. Future research focuses on the development of more

sophisticated prompt engineering techniques to better capture complex logic and language-specific

nuances, while the integration of fine-tuning and domain adaptation can be adopted to improve model

generalization in specialized contexts.

References

[1] Zhang, Z., Chen, C., Liu, B., Liao, C., Gong, Z., Yu, H., Li, J., & Wang, R. (2023). Unifying the Perspectives of NLP

and Software Engineering: A Survey on Language Models for Code. arXiv preprint arXiv:2311.07989. Retrieved

from https://arxiv.org/abs/2311.07989

[2] Li, M., Mishra, A., & Mujumdar, U. (2024). Bridging the Language Gap: Enhancing Multilingual Prompt-Based

Code Generation in LLMs via Zero-Shot Cross-Lingual Transfer. arXiv preprint arXiv:2408.09701. Retrieved from

https://arxiv.org/abs/2408.09701

[3] Roziere, B., Lachaux, M.-A., Chanussot, L., & Lample, G. (2020). Unsupervised Translation of Programming

Languages. arXiv preprint arXiv:2006.03511. Retrieved from https://arxiv.org/abs/2006.035114.

[4] Chen, M., Tworek, J., Jun, H., Yuan, Q., Dehghani, M., Flores, G., ... & Zoph, B. (2021). Evaluating Large Language
Models Trained on Code. arXiv preprint arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.033745.

[5] B. Roziere, M.-A. Lachaux, M. Szafraniec, and G. Lample, “DOBF: A Deobfuscation Pre-Training Objective for

Programming Languages, ” arXiv preprint arXiv:2102.07492, 2021. Retrieved from https://arxiv.org/abs/2102.

07492.

[6] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).

Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

33

Systems (NIPS 2017) (pp. 6000–6010). arXiv preprint arXiv:1706.03762. Retrieved from https://arxiv.org/abs/1706.

03762.

[7] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., ... & Zhou, M. (2020). CodeBERT: A Pre-Trained Model

for Programming and Natural Languages. arXiv preprint arXiv:2002.08155. Retrieved from https://arxiv.org/abs/

2002.08155.

[8] Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K. W. (2021). Unified Pre-training for Program Understanding

and Generation. arXiv preprint arXiv:2103.06333. Retrieved from https://arxiv.org/abs/2103.06333.

[9] Weisz, J. D., Muller, M., Ross, S. I., et al. Better together? An evaluation of AI-supported code translation.

Proceedings of the 27th International Conference on Intelligent User Interfaces. 2022: 369-391.Retrieved from
https://research.ibm.com/publications/better-together-an-evaluation-of-ai-supported-code-translation.

[10] Tufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., & Poshyvanyk, D. (2019). An Empirical Study on

Learning Bug-Fixing Patches in the Wild via Neural Machine Translation. ACM Transactions on Software

Engineering and Methodology (TOSEM), 28(4), 1-29. Retrieved from https://doi.org/10.1145/3340544

[11] Guo, D., Xu, S., Zhao, Z., Li, Z., Wang, H., & Hu, X. (2022). GraphCodeBERT: Pre-trained Code Representation

Learning with Data Flow. arXiv preprint arXiv:2009.08366. Retrieved from https://arxiv.org/abs/2009.08366

[12] Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2018). A Survey of Machine Learning for Big Code and

Naturalness. ACM Computing Surveys (CSUR), 51(4), 1-37. Retrieved from https://doi.org/10.1145/3212695

[13] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the Limits of

Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140), 1-67.

Retrieved from https://arxiv.org/abs/1910.10683

Proceedings of the 5th International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/108/2025.LD21186

34

