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Abstract: The arrangement of sensors is a key step in health monitoring of bridges. A 

reasonable layout can reduce information redundancy and costs while improving data 

accuracy. This paper compares the advantages and disadvantages of traditional sensor 

optimization methods with those based on machine learning algorithms and intelligent 

optimization algorithms, and analyzes the future prospects of applying these three methods. 
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1. Introduction 

Sensor monitoring systems are used to collect large amounts of data related to the health of bridges 

in order to assess their condition. Therefore, the selection and arrangement of sensors are crucial steps 

in bridge health monitoring. The types of commonly used sensors and their monitoring projects are 

shown in the table below: 

Table 1: Types of Sensors  

Monitoring 

classification 
Content sensor 

Monitoring results and 

identification parameters 

 

 

Environmental load 

Load made by 

temperature 
Temperature sensor 

Temperature of key parts of 

the bridge 

Load made by 

wind 
Anemometer 

Wind turbulence  

intensity 

Load made by 

earthquake 
Acceleration sensor 

Acceleration of key  

measuring points 

Operating load Load made by cars 

Vehicle  

speed axle  

meter 

Velocity of motor  

vehicle 

 

Bridge 

characteristics 

Vibration 

performance 
Acceleration sensor 

Mode shape, damping and 

modal frequency 

Displacement 

deformation 

Inclinometer 

displacement meter 
Displacement influence line 
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Bridge response 

Section stress 

Static and  

dynamic 

strain gauge 

Static and dynamic  

stresses of key sections 

Cable force Acceleration sensor 
Force and natural  

frequency of stay cable 

 

Theoretically, sensors can be arranged throughout the bridge to monitor its response 

comprehensively. However, experimental analysis shows that placing an excessive number of sensors 

not only significantly increases economic costs but also results in information redundancy. A rational 

arrangement of sensors can improve the accuracy of monitoring data, reduce data anomalies, provide 

comprehensive monitoring of the bridge’s condition, lower monitoring costs, and enhance monitoring 

efficiency. Carne et al. [1] emphasize that the sensor configuration should ensure that the modal test 

results have good robustness and visibility. However, the current sensor layout does not adequately 

meet these requirements, with many issues existing in information acquisition, optimal solution 

finding, and evaluation of optimization results. Based on the previous discussion on sensor types, 

different sensor types may be affected by various factors. For example, strain sensors are susceptible 

to temperature effects and long-term usage, which can lead to sensor damage and data drift, resulting 

in errors. On the other hand, a scientific sensor layout scheme should fully consider the structural 

behavior characteristics of the bridge under various environmental conditions, using as few sensors 

as possible to obtain sufficiently comprehensive and accurate data. However, existing methods are 

still far from perfect, facing issues such as finite element model errors, inconsistent evaluation criteria, 

difficulty in determining the number of sensors, low computational efficiency, and challenges in 

finding optimal solutions [2]. Currently, a research hotspot in bridge sensor layout optimization is 

achieving the optimal combination of economic and technical factors by arranging n sensors on m 

degrees of freedom (where n < m). Previous research on traditional bridge sensor optimization mainly 

focused on geometric shapes and material mechanical properties. Some relatively mature methods 

include: the Effective Independence Method (EI method), modal strain energy criteria, sequential 

methods, and nonlinear optimization programming methods. Research on sensor optimization based 

on computer technology mainly focuses on machine learning algorithms such as support vector 

machines, random forests, neural networks, etc.; intelligent optimization algorithms such as genetic 

algorithms, simulated annealing, particle swarm optimization, and ant colony algorithms; as well as 

improvements to these intelligent algorithms. These optimization methods currently have certain 

limitations, and inherent problems remain to be addressed. This paper provides a comprehensive 

analysis of the performance of these methods in terms of convergence speed, global optimization 

performance, and computational accuracy, and summarizes and looks forward to solutions for their 

inherent issues. 

2. Traditional Methods for Optimizing Sensor Layout in Bridge Monitoring 

2.1. Effective Independence Method 

Kammer et al. [3] proposed the Effective Independence (EI) method based on the modal matrix theory. 

This method improves the resolution of the target by progressively eliminating the degrees of freedom 

with the smallest contribution to the independence of the target parameters, achieving optimal 

resolution. It is applicable to structural parameter identification under static loading and modal 

identification under dynamic loading. The advantages of the EI method are its efficiency and accuracy, 

which enhance the efficiency of modal parameter information acquisition through sensors. 

Table 1: (continued). 
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Furthermore, the method focuses on the linear independence of the target modal vectors during 

optimization, which helps improve the accuracy of the monitoring results after optimization. However, 

it has limitations, such as its inability to fully capture high modal strain energy regions of the structure 

in some cases, which leads to low modal strain energy measurements, potentially resulting in 

information loss and affecting subsequent data analysis. Additionally, it is sensitive to measurement 

noise and prone to getting trapped in local optima. For structures with high degrees of freedom and 

complex configurations, the selection of modes is often neither reasonable nor theoretically justified. 

To address this issue, Yang Zhi-kui et al. [4] proposed a modification to the EI method based on 

sensitivity coefficients reflecting structural damage, resulting in the Sensitivity-Effective 

Independence method. This method combines vector operations to account for both the observability 

of modes and the recognizability of damage. They introduced a method based on modal 

progressiveness to select the number of modes, solving the problem of selecting the number of modes 

for bridge dynamic systems based on experience and poor observability. This method made the 

selection of the number of modes more objective and reasonable, and verified its accuracy under 

various evaluation criteria. 

Jiezi Zhan et al. [5] addressed the EI method's poor noise resistance by proposing a new modal 

strain energy analysis method, which significantly improves the noise resistance of the traditional EI 

method. 

2.2. Modal Kinetic Energy Method and Residual Method 

The Modal Kinetic Energy (MKE) method and the Drive Point Residue (DPR) method, proposed by 

Chung et al. [6], are applicable to optimizing sensor layouts for large spatial structures such as rail 

structures. MKE is based on modal theory, using modal shapes to describe actual vibration patterns. 

If the modal kinetic energy at a point is maximized, it indicates that this point is the most sensitive to 

vibration, thus being the optimal measurement point. However, MKE is heavily dependent on finite 

element mesh refinement. If the mesh is too coarse, sensors will be placed too far apart, making it 

difficult to capture vibration characteristics accurately. Conversely, if the mesh is too fine, sensors 

will be placed too closely together, increasing costs and introducing additional errors. DPR, based on 

the excitation degree of freedom, selects sensor locations where sensor placement is most beneficial. 

It is particularly useful when precise sensor placement is required. However, the DPR method 

involves complex calculations and may be affected by nonlinear factors, leading to errors. 

2.3. Sequential Method 

Xian-rong Qin et al. proposed the Sequential Method (which includes the step-by-step accumulation 

method and the step-by-step elimination method) [7]. The step-by-step accumulation method 

continuously selects the optimal sensor from available positions based on QR decomposition and 

adds it to the optimization configuration until the off-diagonal elements reach a preset value. The 

step-by-step elimination method selects the sensor with the least contribution to the objective function 

from the remaining sensors and eliminates it until the preset value is reached, progressively 

approaching the optimal solution. This method is suitable for large spatial structures but has 

limitations, such as weak ability to find the optimal solution, dependency on the number of initial 

measurement points, and lack of flexibility. Huang Min-shui et al. [5] studied the engineering 

application of the sequential method through finite element analysis. They analyzed a 5×50m 

prestressed concrete T-shaped continuous beam on the Wanping Highway bridge across the 

Chongsong Reservoir in Nanyang, Henan Province. They concluded that the sequential method, 

based on finite element models, is inevitably affected by modeling errors in the finite element method, 

which adversely impacts the optimization results. Therefore, a key challenge is evaluating the model 
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errors. To assess the quality of optimization results, evaluation criteria such as modal confidence 

criteria [8], singular value ratio (matrix condition number) criteria [9], and modal kinetic energy 

criteria [10] can be used to verify which algorithm better preserves the modal information of the 

dynamic structure. 

3. Sensor Optimization Layout Based on Intelligent Optimization Algorithms 

3.1. Principles and Applications of Classical Intelligent Optimization Algorithms 

Intelligent optimization algorithms, also known as modern heuristic algorithms, are global 

optimization algorithms with strong generality and parallel processing capabilities. These algorithms 

can find the optimal or near-optimal solutions within a given time frame. Common intelligent 

optimization algorithms include genetic algorithms, simulated annealing algorithms, particle swarm 

optimization algorithms, and ant colony optimization algorithms. Below is a brief introduction to 

some applications of these algorithms in optimizing sensor layouts.Holland [11] proposed the genetic 

algorithm (GA), which simulates the genetic evolution process of organisms in nature. It searches for 

global optimal solutions by encoding individuals, selecting, crossing, and mutating them. In sensor 

layout optimization, the sensor positions and quantities can be treated as the search space of the 

genetic algorithm. The best layout solution can be found by evaluating the fitness function. Dorigo et 

al. proposed the ant colony optimization (ACO) algorithm, which simulates the pheromone transfer 

and path selection behavior of ants during their foraging process to guide them toward the optimal 

path. In sensor layout optimization, the monitoring area can be divided into multiple grids, and the 

ant colony algorithm can be used to find the optimal sensor layout to cover the monitoring area. 

Metropolis et al. [12] proposed the simulated annealing algorithm (SA), which is based on the 

similarity between the annealing process of solid materials in physics and combinatorial optimization 

problems. It is a general global optimization algorithm that is simple to compute, robust, and capable 

of solving the nonlinear relationships between sensors. However, its convergence speed is slow, the 

algorithm is complex, and its performance depends on the initial state and parameter values. Other 

types of intelligent optimization algorithms include neural network algorithms and flower pollination 

algorithms [13]. Classical intelligent optimization algorithms can be used for bridge sensor layout 

optimization, as demonstrated by Gao Wei et al. [14], who used genetic algorithms to optimize sensor 

placement. Gao Rongxiong et al. [12] studied the application of simulated annealing based on the 

MAC criterion to optimize the placement of accelerometers on cable-stayed bridges. The 

experimental results show that intelligent optimization algorithms possess high intelligence and 

global optimization capabilities. 

3.2. Improvements and Applications of Intelligent Optimization Algorithms 

Currently, effectively combining traditional sensor layout optimization theories with intelligent 

optimization algorithms for specific bridge structures is a key research direction in the field of bridge 

health monitoring sensor optimization. For instance, Jianqiang Chen et al. [15] used a genetic 

annealing algorithm, which combines genetic algorithms and simulated annealing algorithms, to 

optimize sensor placement on cable-stayed bridges. They improved the genetic annealing algorithm, 

which enhanced its global search capability and accelerated convergence toward the optimal solution. 

The genetic algorithm required 60 iterations, but the optimization result was not ideal. The simulated 

annealing algorithm was more accurate, but required 900 iterations. The improved algorithm required 

only 40 iterations and produced better optimization results. Peiyuan Xiao et al. [16] optimized sensor 

placement on cable-stayed bridges using an improved genetic algorithm. Compared with traditional 

genetic algorithms, the improved genetic algorithm demonstrated higher confidence and stability in 

solving the objective function, significantly reducing the large differences in sensor values during 
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each iteration. It also reduced the manual optimization workload for algorithm parameters under 

different working conditions, allowing for better searching in the sample space. Based on the two 

examples and analyses above, intelligent optimization algorithms have significant advantages over 

traditional optimization methods, such as stronger intelligence, better global optimization capability, 

and faster convergence. However, each algorithm has certain shortcomings. To improve the 

performance of the algorithms, various strategies can be employed, such as hybridizing multiple 

algorithms, developing ensemble learning frameworks, designing new mutation and crossover 

operators, introducing intelligent walking strategies, controlling adaptive parameters, and using deep 

neural networks to predict optimal solutions during the optimization process. For example, the 

optimization of inertia weights in the dragonfly algorithm leads to more precise results, while 

combining genetic and annealing algorithms results in faster convergence and better optimization 

outcomes. 

4. Sensor Optimization Layout Based on Machine Learning 

Machine learning-based sensor optimization methods include data-driven optimization and multi-

source data fusion. Data-driven optimization utilizes historical monitoring data and machine learning 

algorithms to train models, which in turn optimize the sensor layout. Machine learning algorithms 

used for this purpose include support vector machines, random forests, and neural networks. Machine 

learning techniques not only consider the structural characteristics and monitoring requirements of 

the bridge but can also continuously adjust and optimize the number and placement of sensors based 

on real-time monitoring data feedback, selecting the best solution. Additionally, machine learning 

allows for deep analysis and extraction of effective features from the large volumes of response data 

collected, thereby improving the performance of the sensors. Currently, there is relatively little 

research in China on machine learning-based bridge sensor layout optimization, though there has 

been some research on sensor layout optimization in other fields using machine learning. For example, 

Zhang Yu et al. [17] conducted a study on optimizing the layout of gas sensors using machine learning, 

analyzing four common pattern recognition algorithms: support vector machines, k-nearest neighbors, 

random forests, and self-organizing map networks. They found that support vector machines, due to 

their strong nonlinear expression capabilities, performed best in recognition among the four models. 

Comparing the four algorithms showed that machine learning methods are highly efficient and 

accurate in data processing and analysis, enabling real-time monitoring and response, and offering 

more intelligent solutions. Ziyou Yang et al. [18] conducted research on the optimization design of 

temperature sensor layouts based on machine learning. Their findings showed that combining 

simulation models with machine learning can improve simulation accuracy and significantly increase 

optimization efficiency. While machine learning algorithms have advantages in balancing global and 

local optimization, dealing with parameter uncertainty, and processing data quality and speed, they 

still face issues. These can be addressed by improving feature selection, model selection and 

integration, adjusting optimizers and learning rates, and applying regularization to enhance 

optimization performance and convergence speed. 

5. Comparison of Traditional Methods and Computational Methods 

Traditional methods are generally based on statistics and the structural characteristics of the bridge, 

using the mathematical properties of the monitoring matrix to achieve sensor layout optimization. 

The advantages of these methods include simplicity in implementation and the ability to obtain good 

optimization results in specific situations. However, they rely heavily on manual intervention and 

experience, and for complex bridge structures, the optimization results may not be ideal. In contrast, 

sensor layout optimization based on machine learning and intelligent optimization algorithms has 
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significant advantages in handling and analyzing large volumes of data and complex data 

relationships. These methods can better uncover hidden information, possess strong adaptability, and 

can adjust optimization strategies as the structure of the bridge changes. However, the drawbacks 

include the need for large amounts of training data, and the quality of the training data directly affects 

the optimization results. For intelligent optimization algorithms, they offer strong versatility and can 

handle large, complex bridges with high degrees of freedom. These algorithms are also characterized 

by fast convergence and high accuracy, making it possible to find optimal sensor layouts in a short 

amount of time. However, the tuning of algorithm parameters can have a significant impact on the 

results, and in certain situations, they may get stuck in local optima, unable to find the global optimum 

solution. The theoretical basis, complexity, computational efficiency, and applicability of the three 

methods are summarized in the table below.  

Table 2: Comparison of Various Algorithms 

 
Theoretical 

Basis 

Implementation 

Difficulty 

Computational 

Efficiency 

Optimization 

Effectiveness 

Applicable 

Scope 

Traditional 

Methods 
Statistics Low Low 

Poor for 

Complex 

Structures 

Simple 

Structures 

Machine 

Learning 

Artificial 

Intelligence 
High High 

Strong ( For 

complex data 

relationships)  

Complex 

Data 

Processing 

Intelligent 

Optimization 

Algorithms 

Biological 

Phenomena 

in Nature 

Moderate High 

Hogh (For 

complex 

optimization 

problems)  

Widely 

Applicable 

6. Conclusion  

Compared with traditional bridge sensor optimization methods, computer-based methods lack 

intelligence and exhibit limited global optimization performance. Sensor layout optimization based 

on intelligent optimization algorithms and machine learning demonstrates excellent global 

optimization capabilities; however, specific algorithms have inherent limitations. Combining or 

improving different algorithms can enhance their performance. In the future, improvements in 

machine learning and intelligent optimization algorithms may help enhance their performance and 

overcome the limitations inherent in individual algorithms. 
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