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Abstract: The fast development and growth of blockchain technology and cryptocurrencies, 

but most importantly, the fast diffusion of Ethereum, opened new chances for financial 

innovation but aggravated the risks of illegal activities such as money laundering. This paper 

discusses using machine learning techniques to detect illegal transactions over the Ethereum 

network. The dataset used is from Kaggle and includes a record of transaction features 

between Ethereum accounts; it has a high degree of class imbalance. Three machine learning 

models were used to classify transaction legality: Logistic Regression, Random Forest, and 

Extreme Gradient Boosting; this is referred to as XGBoost. Class balancing and data 

preprocessing are ways to improve model performance. The evaluation metrics were chosen 

as Accuracy and Area Under the Receiver Operating Characteristic Curve (ROC AUC). 

Experimental results show that the best performance of the XGBoost model was 98.52% in 

accuracy, while Random Forest was the best on ROC AUC, showing very strong 

classification capabilities. This work has shown the potentiality of machine learning in the 

improvement of blockchain security and provided useful lessons that might be applied to the 

development of scalable AML systems. 

Keywords: Ethereum, Anti-Money Laundering, Machine Learning, Fraud Detection, 

Blockchain Security. 

1. Introduction 

The sudden growth of blockchain technologies, especially Ethereum and other cryptocurrencies, has 

realigned the face of the financial sector. While their nature of decentralization and anonymity allows 

transactions to be conducted seamlessly across borders, the same features attract criminal activities 

such as money laundering and fraud. Anti-money laundering efforts have thus become an important 

concern for governments, financial institutions, and the blockchain community. Machine learning has 

emerged as a key tool in tacking these challenges by analyzing complex transactional patterns and 

behaviors. For example, Ethereum records every transaction, including account-to-account transfers 

and interactions with smart contracts, thus creating a rich dataset for identifying anomalous activities 

and fraudulent behavior [1, 2]. 

Applications such as fraud detection in blockchain ecosystems, machine learning was able to 

provide solutions. Liu et al. developed a model that utilized the LGBM-based mode on Ethereum 

illicit transaction detection. It proves to be capable of handling large-scale data and classifying 
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between normal and suspicious transactions accordingly [1]. In Nguyen et al., an AML system further 

expanded this with more advanced integrations between blockchain data and machine learning 

algorithms. Their model returned high precision in identifying suspicious accounts, which again 

proved the capabilities of scalable machine learning frameworks in combating financial crimes [2]. 

Based on these, Zhang et al. extended them into GTN2vec-a graph embedding technique that 

captured in-depth transactional relationships from within the Ethereum network. Using the 

transactions as representations within graphs, their method did marvels in the detection of money 

laundering activities, offering new ways of doing relational modeling in blockchain AML [3]. Lin 

and Wei went further to trace the flow of stolen assets in the Ethereum heists to show the pattern of 

how illicit funds are laundered. Their study puts weight on how necessary it is to understand 

transactional flows while developing targeted AML measures [4]. 

Recent breakthroughs in graph-based learning have opened new directions for AML detection. 

Smith and Lee focused on the helpfulness of machine learning in blockchain technologies, especially 

in integrating relational transaction data that would improve fraud detection and scalability [5]. Wang 

and Zhang proposed LaundroGraph, a self-supervised graph representation learning framework 

leveraging structural information of blockchain transactions. Their work focused on embedding 

techniques in graphs to improve the strength of the model in detecting malicious activities within a 

complex network [6]. Zhao and Li presented GraphALM, an active learning model, balancing 

computational efficiency with high accuracy. The model tackled challenges related to a large-scale 

transaction dataset coming from blockchain platforms [7]. 

Despite the progress made, several challenges persist in blockchain AML detection. One 

significant issue is the class imbalance problem, where fraudulent transactions account for only a 

small portion of the dataset. This imbalance makes it difficult for models to generalize effectively. 

To address this, Chen et al. applied traditional AML algorithms to blockchain scenarios, emphasizing 

the need for feature engineering tailored to the unique characteristics of Ethereum data [8]. Liu and 

Zhao further advanced this approach by incorporating oversampling techniques and adaptive learning 

to improve the performance of machine learning models in handling imbalanced datasets [9]. 

This research builds on existing work by comparing Logistic Regression, Random Forest, and 

XGBoost for Ethereum AML detection. Insights from Zhang et al. and Chen et al. guide the 

implementation of ensemble methods and oversampling strategies to address the persistent issue of 

class imbalance in blockchain data [10, 11]. Additionally, this study incorporates graph-based 

approaches inspired by recent advancements in LaundroGraph and GraphALM, utilizing the 

relational and structural information inherent in Ethereum transactions to improve detection accuracy 

and scalability [12, 13]. 

The structure of this paper is as follows: Section 2 describes the data gathering, data preprocessing, 

and machine learning models used. Section 3 describes the experimental design, model assessment 

metrics, and results. Section 4 discusses the findings; hence, the strengths of each model and their 

inability to assess some features. Section 5 concludes the main findings along with the limitations 

and ways for further research. This structure has helped the paper conduct a thorough review of 

Ethereum AML detection using machine learning methods that will give valuable insights to both 

academia and industry. 

2. Data and Method 

2.1. Data Collection and Description 

The dataset used in this study was sourced from Kaggle’s publicly available Ethereum Anti-Money 

Laundering (AML) dataset, which contains multiple Ethereum accounts and their transaction features. 

After data cleaning, a total of 7,121 samples were retained. The legality of transactions was 
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determined by the target variable FLAG, where FLAG=0 represents legitimate transactions and 

FLAG=1 denotes illegal transactions. 

The original data exhibited a significant class imbalance: legitimate transactions (FLAG=0) 

accounted for 81.04% of the dataset, totaling 5,771 samples, while illegal transactions (FLAG=1) 

constituted 18.96%, with 1,350 samples (see Table 1). 

Table 1: Description of Ethereum Account Transaction Features. 

Feature Description Feature Description 

Address 

Account address, a unique 

identifier on the Ethereum 

blockchain used to mark 

each account. 

FLAG 

Target variable, 0 indicates 

legitimate transaction, 1 

indicates fraudulent 

transaction. 

Avg min 

between sent 

tnx 

Average time interval (in 

minutes) between sent 

transactions, reflects the 

frequency of account's 

outgoing transactions. 

Avg min 

between 

received tnx 

Average time interval (in 

minutes) between received 

transactions, reflects the 

frequency of account's 

incoming transactions. 

Time Diff 

between first 

and last 

(Mins) 

Time difference between the 

account's first and last 

transaction, reflects the 

account's active duration. 

Sent tnx 

Total number of transactions 

sent by the account, measures 

outgoing transaction activity. 

Received Tnx 

Total number of transactions 

received by the account, 

measures incoming 

transaction activity. 

Number of 

Created 

Contracts 

Number of smart contracts 

created by the account, 

indicates involvement in 

complex smart contract 

behavior. 

Unique 

Received 

From 

Addresses 

Number of unique receiving 

addresses, reflects the 

diversity of fund sources. 

Unique Sent 

To Addresses 

Number of unique sending 

addresses, reflects the diversity 

of fund destinations. 

min value 

received 

Minimum amount received 

in transactions (in Ether), 

fraudulent transactions often 

involve small amounts. 

max value 

received 

Maximum amount received in 

transactions, captures potential 

high-value incoming fund 

flows. 

avg val 

received 

Average amount received in 

transactions, reflects the 

scale of account's fund 

movements. 

min val sent 

Minimum amount sent in 

transactions (in Ether), may 

reflect fund dispersion 

strategies. 

max val sent 

Maximum amount sent in 

transactions, used to analyze 

potentially abnormal large 

outgoing fund flows. 

avg val sent 

Average amount sent in 

transactions, measures the 

characteristics of account's 

fund movements. 

min value sent 

to contract 

Minimum amount sent to 

smart contracts, used to 

analyze smart contract-

related fund behavior. 

max val sent 

to contract 

Maximum amount sent to 

smart contracts, may reflect 

complex fund operations. 
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avg value sent 

to contract 

Average amount sent to 

smart contracts, shows the 

scale of account interactions 

with smart contracts. 

total 

transactions 

Total number of transactions 

(including contract creation), 

reflects overall account 

activity. 

total Ether 

sent 

Total amount of Ether sent 

by the account, used to 

analyze the scale of outgoing 

funds. 

total ether 

received 

Total amount of Ether received 

by the account, used to analyze 

the scale of incoming funds. 

total ether sent 

contracts 

Total amount of Ether sent to 

smart contracts, measures the 

scale of fund interactions 

with smart contracts. 

total ether 

balance 

Account's Ether balance, 

reflects the account's fund 

retention status. 

ERC20 uniq 

sent token 

name 

Number of unique ERC20 

token types sent by the 

account, reflects diversity in 

token trading. 

ERC20 uniq 

rec token 

name 

Number of unique ERC20 

token types received by the 

account, shows diversity in 

token receiving behavior. 

ERC20 most 

sent token 

type 

Most common token type 

sent by the account, used to 

identify token trading 

preferences. 

ERC20 most 

rec token type 

Most common token type 

received by the account, used 

to analyze token receiving 

preferences. 

2.2. Data Pre-processing 

The raw dataset contained missing values in some numerical features. To ensure data quality, these 

missing data points were removed. Additionally, the class distribution in the original dataset was 

highly imbalanced, with illegal transactions (`FLAG=1`) accounting for only 18.96%. This imbalance 

could lead to the model being biased toward the majority class (legitimate transactions). 

To address this issue, an undersampling method was used to adjust the class distribution to a 60:40 

ratio. Specifically, all minority class samples (`FLAG=1`, totaling 1,350 samples) were retained. 

From the majority class samples (`FLAG=0`), 2,025 samples were randomly selected and combined 

with the minority class samples. The resulting balanced dataset contained 3,375 samples. A 

comparison of the class distribution before and after adjustment is shown in Table 2. 

Table 2: A Comparison of FLAG Class Distribution Before and After Adjustment. 

FLAG 
Original Sample 

Count 

Original Percentage 

(%) 

Adjusted Sample 

Count 

Adjusted Percentage 

(%) 

0 5771 81.04 2025 60.00 

1 1350 18.96 1350 40.00 

All numerical features in the dataset were standardized using the StandardScaler to transform the 

feature values into a distribution with a mean of 0 and a standard deviation of 1. This standardization 

reduced the impact of varying scales among different features. The dataset was then split into training 

and testing sets using the train_test_split function, ensuring consistent distribution between the 

training and testing data. 

Table 1: (continued). 

Proceedings of  the 3rd International  Conference on Mechatronics and Smart  Systems 
DOI:  10.54254/2755-2721/125/2025.21206 

257 



 

2.3. Model Description 

2.3.1. Logistic Regression 

Logistic Regression is a classic linear classification model widely used in binary classification tasks. 

The model maps the output of linear regression to probabilities between [0, 1] using the Sigmoid 

function, and samples are classified based on a defined threshold. The core concept is to estimate the 

probability of the target variable using the linear relationship of log odds, as shown in Equation (1). 

 𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−(𝑤𝑇𝑥+𝑏) (1) 

Here, 𝑥 represents the input feature vector, 𝑤 is the weight vector indicating the importance of 

each feature, and 𝑏 is the bias term that adjusts the overall probability of the model. Classification 

decisions are made by setting a threshold; for example, 𝑃(𝑦 = 1|𝑥) ≥ 0.5, the prediction is 𝑦 = 1; 

otherwise, 𝑦 = 0. Logistic Regression estimates the parameters 𝑤  and 𝑏 by maximizing the log-

likelihood function, improving the model’s ability to fit the target variable. In this study, the Logistic 

Regression model was configured with the parameter class_weight='balanced' to address the class 

imbalance, and the maximum number of iterations was set to 1,000 to ensure convergence during 

optimization. 

2.3.2. Random Forest 

Random Forest is an ensemble learning method based on decision trees. It enhances classification 

performance by constructing multiple random decision trees and combining their results through 

voting or averaging. The final classification result of Random Forest is determined by the majority 

vote of all decision trees, as expressed in Equation (2): 

 �̂� = Mode{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(𝑥)} (2) 

Here, (𝑇𝑖(𝑥)) is the prediction of the i-th tree for sample x. There are n decision trees in total. 

Random Forest uses bootstrap sampling to randomly select several samples from the original dataset 

to construct each tree. Besides, in each split, Random Forest also randomly selects a subset of features 

to increase its diversity and improve generalization. 

In this problem, 100 trees were configured for the Random Forest, and then the parameter 

class_weight='balanced' was passed to tackle class imbalance. Also, for the performance evaluation 

of models, the cross-validation technique should be adapted to ensure good learning of the model 

across different samples. 

2.3.3. eXtreme Gradient Boosting  

eXtreme Gradient Boosting(XGBoost) is a gradient boosting-based ensemble learning algorithm, 

which has the best characteristics of efficient training performance and powerful nonlinear modeling. 

Constructing multiple weighted decision trees and iteratively optimizing the prediction error improve 

the generalization capability of the model's classification. The prediction result in Equation (3) is 

determined as the weighted sum of all the weak learners. 

 �̂� = ∑ 𝑓𝑡(𝑥)𝑇
𝑡=1 , 𝑓𝑡 ∈ ℱ (3) 

Here, 𝑓𝑡(𝑥) denotes the prediction of the t-th tree for input sample x and ℱ is the function space 

of all regression trees. The model is optimized through minimization of the objective function defined 

in Equation (4). 
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 ℒ = ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡)̂

)𝑛
𝑖=1 + ∑ Ω(𝑓𝑡)𝑇

𝑡=1   (4) 

In this equation, 𝑙 represents the loss function (e.g., logarithmic loss), and Ω(𝑓𝑡)  is the 

regularization term used to control model complexity and reduce the risk of overfitting. XGBoost 

introduces several unique features, including regularization for improved generalization, support for 

parallel computing to accelerate training, and the ability to analyze feature importance. These 

characteristics make it highly effective for handling high-dimensional data and complex nonlinear 

relationships. 

In this study, the XGBoost model was configured with the parameter scale_pos_weight=10 to 

address class imbalance. The evaluation metric eval_metric='logloss' was used, and the learning rate 

was set to 0.1 to optimize the model’s sensitivity to imbalanced data. 

3. Results and Discussion 

3.1. Experimental Setup 

Below is the code that split the dataset into 80% training data and 20% testing data. StandardScaler 

was used to standardize all feature variables in order not to get the impact of different scales among 

features while training models. To evaluate different models, three classification algorithms 

commonly used are selected: Random Forest, XGBoost, and Logistic Regression. 

It was evaluated by two metrics-ROC AUC, being the metric used for this problem that is going 

to tell about the ability of the model in classifying between a genuine and fraud transaction; Accuracy 

is about general model performance on the test set. Further assurance on model stability and 

generalization-Stratified K-Fold Cross Validation during training was necessary in order for 

performances to be consistently reproduced given small subsets. 

3.2. Experimental Results in Tables and Graphs 

This section presents the main experimental results, along with intuitive comparisons through tables 

and figures. 

Table 3: Model Performance Comparison 

Model Test Accuracy ROC AUC (Mean ± Std Dev) 

Random Forest 97.63% 0.99877 ± 0.00061 

XGBoost 98.52% 0.99844 ± 0.00101 

Logistic Regression 94.07% 0.96554 ± 0.00486 

The accuracy of XGBoost from Table 3 is the highest at 98.52%, followed by Random Forest at 

97.63%. While XGBoost presented the best accuracy, Random Forest presented a slightly higher 

ROC AUC, which means it was better in terms of the discrimination ability between positive and 

negative samples. Logistic Regression, given its linear assumptions, demonstrated much weaker 

performance compared to the other models. 
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Figure 1: Learning Curve of Optimized Random Forest Model. (Picture credit: Original). 

The performance of the Random Forest model was further fine-tuned: by increasing the number 

of trees, restraining the depth of trees, tuning the minimum number of samples required to split, also 

on leaf nodes, and performing class balancing. Figure 1 depicts a clear representation using a learning 

curve about the model improvement. 

Also, the best Random Forest model was very good, with an accuracy on test data of 97.63%, 

compared with 98.52% for XGBoost, though it outperformed XGBoost regarding AUC-ROC, which 

means a greater effectiveness in distinguishing between positive and negative samples. With regard 

to Logistic Regression, Random Forest expressed better nonlinear relationships inherent in the data 

and was more impressive. 

XGBoost gives the best performance, but Random Forest is far more stable regarding the 

computational efficiency and feature complexity and, therefore, applicable for large-scale data 

processing. Logistic Regression works well in the case of a simple problem and when linearity can 

be assumed; this was not the case here, hence its performance was not very good, since it cannot 

model nonlinear relationships. 

It follows from the outcomes that though XGBoost is the most accurate model, Random Forest 

presents a possible alternative for efficient handling of imbalanced data and complex features and, 

therefore, is useful for scalable applications. 

4. Conclusion 

This paper compared the performance of various machine learning models for classification into 

either legitimate or fraudulent transaction classes using the Ethereum AML dataset. 

Among these, the result comparison of Logistic Regression, Random Forest, and XGBoost shows 

that XGBoost possesses the highest accuracy of 98.52%, while the Random Forest is slightly better 

in terms of distinguishing between positive and negative samples. By contrast, logistic regression 

always shows inferior performance in dealing with complex features because of the restriction of the 

linear assumption. Standardization of data, undersampling, and tuning parameters have been done to 

deal with class imbalance. The results proved that ensemble methods are still a better choice for 

financial transaction classification tasks. 

However, the only limiting factors are that this paper is based on a single dataset and has not 

considered the temporal dynamics of features, which may affect the generalization capability of 

results and their adaptability to real-time fraud detection. 

Follow-up research can add more data from diverse sources and dynamics, and hybrid models 

might be further tried to develop the current performance. It offers new practical directions for anti-
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money laundering methods applied on blockchain transaction data, with great theoretical value and 

practical importance. 
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