

Research on Illegal Transaction Detection in Ethereum
Network Based on Machine Learning

Shiwei Cao1,a,*

1School of Computer and Communication Engineering, Changsha University of Science and

Technology, Changsha, Hunan, China

a. annex@stu.csust.edu.cn

*corresponding author

Abstract: The fast development and growth of blockchain technology and cryptocurrencies,

but most importantly, the fast diffusion of Ethereum, opened new chances for financial

innovation but aggravated the risks of illegal activities such as money laundering. This paper

discusses using machine learning techniques to detect illegal transactions over the Ethereum

network. The dataset used is from Kaggle and includes a record of transaction features

between Ethereum accounts; it has a high degree of class imbalance. Three machine learning

models were used to classify transaction legality: Logistic Regression, Random Forest, and

Extreme Gradient Boosting; this is referred to as XGBoost. Class balancing and data

preprocessing are ways to improve model performance. The evaluation metrics were chosen

as Accuracy and Area Under the Receiver Operating Characteristic Curve (ROC AUC).

Experimental results show that the best performance of the XGBoost model was 98.52% in

accuracy, while Random Forest was the best on ROC AUC, showing very strong

classification capabilities. This work has shown the potentiality of machine learning in the

improvement of blockchain security and provided useful lessons that might be applied to the

development of scalable AML systems.

Keywords: Ethereum, Anti-Money Laundering, Machine Learning, Fraud Detection,

Blockchain Security.

1. Introduction

The sudden growth of blockchain technologies, especially Ethereum and other cryptocurrencies, has

realigned the face of the financial sector. While their nature of decentralization and anonymity allows

transactions to be conducted seamlessly across borders, the same features attract criminal activities

such as money laundering and fraud. Anti-money laundering efforts have thus become an important

concern for governments, financial institutions, and the blockchain community. Machine learning has

emerged as a key tool in tacking these challenges by analyzing complex transactional patterns and

behaviors. For example, Ethereum records every transaction, including account-to-account transfers

and interactions with smart contracts, thus creating a rich dataset for identifying anomalous activities

and fraudulent behavior [1, 2].

Applications such as fraud detection in blockchain ecosystems, machine learning was able to

provide solutions. Liu et al. developed a model that utilized the LGBM-based mode on Ethereum

illicit transaction detection. It proves to be capable of handling large-scale data and classifying

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

254

between normal and suspicious transactions accordingly [1]. In Nguyen et al., an AML system further

expanded this with more advanced integrations between blockchain data and machine learning

algorithms. Their model returned high precision in identifying suspicious accounts, which again

proved the capabilities of scalable machine learning frameworks in combating financial crimes [2].

Based on these, Zhang et al. extended them into GTN2vec-a graph embedding technique that

captured in-depth transactional relationships from within the Ethereum network. Using the

transactions as representations within graphs, their method did marvels in the detection of money

laundering activities, offering new ways of doing relational modeling in blockchain AML [3]. Lin

and Wei went further to trace the flow of stolen assets in the Ethereum heists to show the pattern of

how illicit funds are laundered. Their study puts weight on how necessary it is to understand

transactional flows while developing targeted AML measures [4].

Recent breakthroughs in graph-based learning have opened new directions for AML detection.

Smith and Lee focused on the helpfulness of machine learning in blockchain technologies, especially

in integrating relational transaction data that would improve fraud detection and scalability [5]. Wang

and Zhang proposed LaundroGraph, a self-supervised graph representation learning framework

leveraging structural information of blockchain transactions. Their work focused on embedding

techniques in graphs to improve the strength of the model in detecting malicious activities within a

complex network [6]. Zhao and Li presented GraphALM, an active learning model, balancing

computational efficiency with high accuracy. The model tackled challenges related to a large-scale

transaction dataset coming from blockchain platforms [7].

Despite the progress made, several challenges persist in blockchain AML detection. One

significant issue is the class imbalance problem, where fraudulent transactions account for only a

small portion of the dataset. This imbalance makes it difficult for models to generalize effectively.

To address this, Chen et al. applied traditional AML algorithms to blockchain scenarios, emphasizing

the need for feature engineering tailored to the unique characteristics of Ethereum data [8]. Liu and

Zhao further advanced this approach by incorporating oversampling techniques and adaptive learning

to improve the performance of machine learning models in handling imbalanced datasets [9].

This research builds on existing work by comparing Logistic Regression, Random Forest, and

XGBoost for Ethereum AML detection. Insights from Zhang et al. and Chen et al. guide the

implementation of ensemble methods and oversampling strategies to address the persistent issue of

class imbalance in blockchain data [10, 11]. Additionally, this study incorporates graph-based

approaches inspired by recent advancements in LaundroGraph and GraphALM, utilizing the

relational and structural information inherent in Ethereum transactions to improve detection accuracy

and scalability [12, 13].

The structure of this paper is as follows: Section 2 describes the data gathering, data preprocessing,

and machine learning models used. Section 3 describes the experimental design, model assessment

metrics, and results. Section 4 discusses the findings; hence, the strengths of each model and their

inability to assess some features. Section 5 concludes the main findings along with the limitations

and ways for further research. This structure has helped the paper conduct a thorough review of

Ethereum AML detection using machine learning methods that will give valuable insights to both

academia and industry.

2. Data and Method

2.1. Data Collection and Description

The dataset used in this study was sourced from Kaggle’s publicly available Ethereum Anti-Money

Laundering (AML) dataset, which contains multiple Ethereum accounts and their transaction features.

After data cleaning, a total of 7,121 samples were retained. The legality of transactions was

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

255

determined by the target variable FLAG, where FLAG=0 represents legitimate transactions and

FLAG=1 denotes illegal transactions.

The original data exhibited a significant class imbalance: legitimate transactions (FLAG=0)

accounted for 81.04% of the dataset, totaling 5,771 samples, while illegal transactions (FLAG=1)

constituted 18.96%, with 1,350 samples (see Table 1).

Table 1: Description of Ethereum Account Transaction Features.

Feature Description Feature Description

Address

Account address, a unique

identifier on the Ethereum

blockchain used to mark

each account.

FLAG

Target variable, 0 indicates

legitimate transaction, 1

indicates fraudulent

transaction.

Avg min

between sent

tnx

Average time interval (in

minutes) between sent

transactions, reflects the

frequency of account's

outgoing transactions.

Avg min

between

received tnx

Average time interval (in

minutes) between received

transactions, reflects the

frequency of account's

incoming transactions.

Time Diff

between first

and last

(Mins)

Time difference between the

account's first and last

transaction, reflects the

account's active duration.

Sent tnx

Total number of transactions

sent by the account, measures

outgoing transaction activity.

Received Tnx

Total number of transactions

received by the account,

measures incoming

transaction activity.

Number of

Created

Contracts

Number of smart contracts

created by the account,

indicates involvement in

complex smart contract

behavior.

Unique

Received

From

Addresses

Number of unique receiving

addresses, reflects the

diversity of fund sources.

Unique Sent

To Addresses

Number of unique sending

addresses, reflects the diversity

of fund destinations.

min value

received

Minimum amount received

in transactions (in Ether),

fraudulent transactions often

involve small amounts.

max value

received

Maximum amount received in

transactions, captures potential

high-value incoming fund

flows.

avg val

received

Average amount received in

transactions, reflects the

scale of account's fund

movements.

min val sent

Minimum amount sent in

transactions (in Ether), may

reflect fund dispersion

strategies.

max val sent

Maximum amount sent in

transactions, used to analyze

potentially abnormal large

outgoing fund flows.

avg val sent

Average amount sent in

transactions, measures the

characteristics of account's

fund movements.

min value sent

to contract

Minimum amount sent to

smart contracts, used to

analyze smart contract-

related fund behavior.

max val sent

to contract

Maximum amount sent to

smart contracts, may reflect

complex fund operations.

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

256

avg value sent

to contract

Average amount sent to

smart contracts, shows the

scale of account interactions

with smart contracts.

total

transactions

Total number of transactions

(including contract creation),

reflects overall account

activity.

total Ether

sent

Total amount of Ether sent

by the account, used to

analyze the scale of outgoing

funds.

total ether

received

Total amount of Ether received

by the account, used to analyze

the scale of incoming funds.

total ether sent

contracts

Total amount of Ether sent to

smart contracts, measures the

scale of fund interactions

with smart contracts.

total ether

balance

Account's Ether balance,

reflects the account's fund

retention status.

ERC20 uniq

sent token

name

Number of unique ERC20

token types sent by the

account, reflects diversity in

token trading.

ERC20 uniq

rec token

name

Number of unique ERC20

token types received by the

account, shows diversity in

token receiving behavior.

ERC20 most

sent token

type

Most common token type

sent by the account, used to

identify token trading

preferences.

ERC20 most

rec token type

Most common token type

received by the account, used

to analyze token receiving

preferences.

2.2. Data Pre-processing

The raw dataset contained missing values in some numerical features. To ensure data quality, these

missing data points were removed. Additionally, the class distribution in the original dataset was

highly imbalanced, with illegal transactions (`FLAG=1`) accounting for only 18.96%. This imbalance

could lead to the model being biased toward the majority class (legitimate transactions).

To address this issue, an undersampling method was used to adjust the class distribution to a 60:40

ratio. Specifically, all minority class samples (`FLAG=1`, totaling 1,350 samples) were retained.

From the majority class samples (`FLAG=0`), 2,025 samples were randomly selected and combined

with the minority class samples. The resulting balanced dataset contained 3,375 samples. A

comparison of the class distribution before and after adjustment is shown in Table 2.

Table 2: A Comparison of FLAG Class Distribution Before and After Adjustment.

FLAG
Original Sample

Count

Original Percentage

(%)

Adjusted Sample

Count

Adjusted Percentage

(%)

0 5771 81.04 2025 60.00

1 1350 18.96 1350 40.00

All numerical features in the dataset were standardized using the StandardScaler to transform the

feature values into a distribution with a mean of 0 and a standard deviation of 1. This standardization

reduced the impact of varying scales among different features. The dataset was then split into training

and testing sets using the train_test_split function, ensuring consistent distribution between the

training and testing data.

Table 1: (continued).

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

257

2.3. Model Description

2.3.1. Logistic Regression

Logistic Regression is a classic linear classification model widely used in binary classification tasks.

The model maps the output of linear regression to probabilities between [0, 1] using the Sigmoid

function, and samples are classified based on a defined threshold. The core concept is to estimate the

probability of the target variable using the linear relationship of log odds, as shown in Equation (1).

 𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−(𝑤𝑇𝑥+𝑏) (1)

Here, 𝑥 represents the input feature vector, 𝑤 is the weight vector indicating the importance of

each feature, and 𝑏 is the bias term that adjusts the overall probability of the model. Classification

decisions are made by setting a threshold; for example, 𝑃(𝑦 = 1|𝑥) ≥ 0.5, the prediction is 𝑦 = 1;

otherwise, 𝑦 = 0. Logistic Regression estimates the parameters 𝑤 and 𝑏 by maximizing the log-

likelihood function, improving the model’s ability to fit the target variable. In this study, the Logistic

Regression model was configured with the parameter class_weight='balanced' to address the class

imbalance, and the maximum number of iterations was set to 1,000 to ensure convergence during

optimization.

2.3.2. Random Forest

Random Forest is an ensemble learning method based on decision trees. It enhances classification

performance by constructing multiple random decision trees and combining their results through

voting or averaging. The final classification result of Random Forest is determined by the majority

vote of all decision trees, as expressed in Equation (2):

 �̂� = Mode{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑛(𝑥)} (2)

Here, (𝑇𝑖(𝑥)) is the prediction of the i-th tree for sample x. There are n decision trees in total.

Random Forest uses bootstrap sampling to randomly select several samples from the original dataset

to construct each tree. Besides, in each split, Random Forest also randomly selects a subset of features

to increase its diversity and improve generalization.

In this problem, 100 trees were configured for the Random Forest, and then the parameter

class_weight='balanced' was passed to tackle class imbalance. Also, for the performance evaluation

of models, the cross-validation technique should be adapted to ensure good learning of the model

across different samples.

2.3.3. eXtreme Gradient Boosting

eXtreme Gradient Boosting(XGBoost) is a gradient boosting-based ensemble learning algorithm,

which has the best characteristics of efficient training performance and powerful nonlinear modeling.

Constructing multiple weighted decision trees and iteratively optimizing the prediction error improve

the generalization capability of the model's classification. The prediction result in Equation (3) is

determined as the weighted sum of all the weak learners.

 �̂� = ∑ 𝑓𝑡(𝑥)𝑇
𝑡=1 , 𝑓𝑡 ∈ ℱ (3)

Here, 𝑓𝑡(𝑥) denotes the prediction of the t-th tree for input sample x and ℱ is the function space

of all regression trees. The model is optimized through minimization of the objective function defined

in Equation (4).

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

258

 ℒ = ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡)̂

)𝑛
𝑖=1 + ∑ Ω(𝑓𝑡)𝑇

𝑡=1 (4)

In this equation, 𝑙 represents the loss function (e.g., logarithmic loss), and Ω(𝑓𝑡) is the

regularization term used to control model complexity and reduce the risk of overfitting. XGBoost

introduces several unique features, including regularization for improved generalization, support for

parallel computing to accelerate training, and the ability to analyze feature importance. These

characteristics make it highly effective for handling high-dimensional data and complex nonlinear

relationships.

In this study, the XGBoost model was configured with the parameter scale_pos_weight=10 to

address class imbalance. The evaluation metric eval_metric='logloss' was used, and the learning rate

was set to 0.1 to optimize the model’s sensitivity to imbalanced data.

3. Results and Discussion

3.1. Experimental Setup

Below is the code that split the dataset into 80% training data and 20% testing data. StandardScaler

was used to standardize all feature variables in order not to get the impact of different scales among

features while training models. To evaluate different models, three classification algorithms

commonly used are selected: Random Forest, XGBoost, and Logistic Regression.

It was evaluated by two metrics-ROC AUC, being the metric used for this problem that is going

to tell about the ability of the model in classifying between a genuine and fraud transaction; Accuracy

is about general model performance on the test set. Further assurance on model stability and

generalization-Stratified K-Fold Cross Validation during training was necessary in order for

performances to be consistently reproduced given small subsets.

3.2. Experimental Results in Tables and Graphs

This section presents the main experimental results, along with intuitive comparisons through tables

and figures.

Table 3: Model Performance Comparison

Model Test Accuracy ROC AUC (Mean ± Std Dev)

Random Forest 97.63% 0.99877 ± 0.00061

XGBoost 98.52% 0.99844 ± 0.00101

Logistic Regression 94.07% 0.96554 ± 0.00486

The accuracy of XGBoost from Table 3 is the highest at 98.52%, followed by Random Forest at

97.63%. While XGBoost presented the best accuracy, Random Forest presented a slightly higher

ROC AUC, which means it was better in terms of the discrimination ability between positive and

negative samples. Logistic Regression, given its linear assumptions, demonstrated much weaker

performance compared to the other models.

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

259

Figure 1: Learning Curve of Optimized Random Forest Model. (Picture credit: Original).

The performance of the Random Forest model was further fine-tuned: by increasing the number

of trees, restraining the depth of trees, tuning the minimum number of samples required to split, also

on leaf nodes, and performing class balancing. Figure 1 depicts a clear representation using a learning

curve about the model improvement.

Also, the best Random Forest model was very good, with an accuracy on test data of 97.63%,

compared with 98.52% for XGBoost, though it outperformed XGBoost regarding AUC-ROC, which

means a greater effectiveness in distinguishing between positive and negative samples. With regard

to Logistic Regression, Random Forest expressed better nonlinear relationships inherent in the data

and was more impressive.

XGBoost gives the best performance, but Random Forest is far more stable regarding the

computational efficiency and feature complexity and, therefore, applicable for large-scale data

processing. Logistic Regression works well in the case of a simple problem and when linearity can

be assumed; this was not the case here, hence its performance was not very good, since it cannot

model nonlinear relationships.

It follows from the outcomes that though XGBoost is the most accurate model, Random Forest

presents a possible alternative for efficient handling of imbalanced data and complex features and,

therefore, is useful for scalable applications.

4. Conclusion

This paper compared the performance of various machine learning models for classification into

either legitimate or fraudulent transaction classes using the Ethereum AML dataset.

Among these, the result comparison of Logistic Regression, Random Forest, and XGBoost shows

that XGBoost possesses the highest accuracy of 98.52%, while the Random Forest is slightly better

in terms of distinguishing between positive and negative samples. By contrast, logistic regression

always shows inferior performance in dealing with complex features because of the restriction of the

linear assumption. Standardization of data, undersampling, and tuning parameters have been done to

deal with class imbalance. The results proved that ensemble methods are still a better choice for

financial transaction classification tasks.

However, the only limiting factors are that this paper is based on a single dataset and has not

considered the temporal dynamics of features, which may affect the generalization capability of

results and their adaptability to real-time fraud detection.

Follow-up research can add more data from diverse sources and dynamics, and hybrid models

might be further tried to develop the current performance. It offers new practical directions for anti-

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

260

money laundering methods applied on blockchain transaction data, with great theoretical value and

practical importance.

References

[1] Liu, J., Zhang, W., & Wang, X. (2022). LGBM: A machine learning method for Ethereum fraud detection. Springer

Nature Computer Science. \

[2] Nguyen, T., Chen, J., & Li, H. (2023). Enhanced anti-money laundering system integrating blockchain and machine

learning. In Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (pp. 1–7).

[3] Zhang, Y., Li, F., & Liu, P. (2023). GTN2vec: Graph embedding for Ethereum money laundering detection. ACM

Transactions on Knowledge Discovery from Data, 17(4), 1–18.

[4] Lin, C., & Wei, H. (2022). Understanding cryptocurrency money laundering through Ethereum heist asset flow.

International Journal of Financial Studies, 10(4), 105.

[5] Smith, A., & Lee, C. (2021). Machine learning application in anti-money laundering for blockchain technologies.

IEEE Transactions on Cybernetics, 51(5), 2341–2350. \

[6] Wang, Y., & Zhang, Z. (2023). LaundroGraph: Self-supervised graph representation learning for anti-money

laundering. In Neural Information Processing Systems (NeurIPS). https://doi.org/10.48550/arXiv.2210.14360

[7] Zhao, K., & Li, T. (2023). GraphALM: Active learning model for money laundering transaction detection on

blockchain networks. IEEE Access, 11, 3176780–3176791.

[8] Chen, R., Li, Y., & Liu, Z. (2022). Applying traditional anti-money laundering algorithms to new scenarios on

Ethereum. In ACM Symposium on Blockchain and Smart Contracts (pp. 1–8).

[9] Liu, F., & Zhao, H. (2022). A machine learning-based anti-money laundering system and method. China Patent

CN2022028748.

[10] Zhang, M., Liu, P., & Wang, Y. (2023). Application and development of machine learning in anti-money laundering.

Journal of Financial Regulation and Compliance Research, 7(2), 103–110.

[11] Wang, Y., & Zhang, Z. (2023). LaundroGraph: Self-supervised graph representation learning for anti-money

laundering. In Neural Information Processing Systems (NeurIPS). https://doi.org/10.48550/arXiv.2210.14360

[12] Zhao, K., & Li, T. (2023). GraphALM: Active learning model for money laundering transaction detection on

blockchain networks. IEEE Access, 11, 3176780–3176791. https://doi.org/10.1109/ACCESS.2023.3176780

[13] Chen, R., Li, Y., & Liu, Z. (2022). Application of traditional anti-money laundering algorithms in new scenarios on

Ethereum. In ACM Symposium on Blockchain and Smart Contracts (pp. 1–8). https://doi.org/10.1145/3511234

Proceedings of the 3rd International Conference on Mechatronics and Smart Systems
DOI: 10.54254/2755-2721/125/2025.21206

261

