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Abstract: With the rapid acceleration of urbanization, traffic congestion has become an 

increasingly serious challenge for cities worldwide, impacting both economic productivity 

and the quality of life for residents. Efficient traffic management is essential to alleviate 

congestion and optimize the use of infrastructure. Traffic forecasting, which involves 

predicting traffic flow and congestion patterns, plays a pivotal role in enhancing traffic 

management systems and facilitating better decision-making. This study explores the 

application of machine learning techniques alongside traditional statistical methods to predict 

traffic flow. The experimental results show that machine learning methods offer significant 

improvements in forecasting accuracy, providing more reliable predictions of traffic 

conditions compared to conventional approaches. The findings underscore the potential of 

these advanced methods to improve traffic management strategies, optimize resource 

allocation, and reduce congestion, ultimately leading to more sustainable urban transportation 

systems. These insights are valuable for urban planners and policymakers looking to 

implement data-driven solutions to address the growing challenges of urban mobility. 
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1. Introduction 

As the economy develops, technology advances and urbanization accelerates, traffic congestion is 

increasingly affecting the lives of city residents, and this problem is becoming more prominent [1]. 

The importance of traffic forecasting is growing day by day. Traffic forecasting refers to predicting 

changes in traffic flow at a specific time or area by analyzing historical traffic data, real-time 

monitoring information, and various factors in the traffic network [2]. It helps traffic management 

departments optimize scheduling, plan infrastructure, reduce congestion, improve traffic efficiency, 

optimize resource allocation, and provide drivers with timely traffic information and navigation 

advice. 

In recent years, with the development of artificial intelligence technology, especially the 

continuous maturation of machine learning techniques, Traditional statistical methods (such as 

ARMA, ARIMA, and SARIMA) can no longer meet the requirements [3]. 

 An increasing number of models have been developed and applied to traffic forecasting [4]. Graph 

convolutional networks (GCN) have become a very popular approach, as they are capable of 

capturing the complex relationships and structural information between nodes in a graph and handling 

non-Euclidean data [2]. Ensemble learning methods [5], such as eXtreme Gradient Boosting 

(XGBoost), enhance predictive ability and generalization performance by combining multiple 
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decision tree (DT) models [5]. Probabilistic models, such as Bayesian networks, abstract the 

dependency relationships of traffic flow between multiple lanes and intersections into graph models 

and infer the flow distribution at each moment from historical data [6]. In addition to machine learning 

methods, traditional traffic flow prediction methods mainly rely on statistical models and empirical 

formulas, such as Logistic Regression (LR), Gaussian Naive Bayes (GNB), and Ridge Classifier 

(Ridge). Among them, time series models, like Seasonal Autoregressive Integrated Moving Average 

(SARIMA), are based on sequences formed over time [7]. This model depends on the variation of 

data over time, but it may not perform well with complex non-stationary data. Models like 

Autoregressive Integrated Moving Average (ARIMA) [8], which combine autoregression, 

differencing, and moving averages, capture the trend, seasonality, and random fluctuations in time 

series data. Regression methods, such as vector autoregression, can also be used to capture the linear 

dependencies between multiple time series variables. These methods model historical data to predict 

future traffic flow [9]. 

However, the above methods are time-consuming and prone to overfitting, often performing 

poorly in long-term forecasting tasks [10]. This study employs machine learning techniques to 

explore the performance of different models in the field of traffic forecasting. For data that follows a 

linear distribution pattern and has a small sample size, the Synthetic Minority Over-sampling 

Technique (SMOTE) method is introduced to increase the sample data and shuffle the dataset. 

Meanwhile, robustness and generalization tests are incorporated to enhance the model’s learning 

ability when faced with data variations. Additionally, regularization techniques are used to determine 

whether the added data causes overfitting in the model. 

The first section of this paper introduces relevant information, the second section presents the data 

used in the experiments, the third section discusses the experimental results, the fourth section 

outlines the limitations of the methods, and the fifth section presents the conclusions drawn from the 

experimental findings. 

2. Data and Method 

2.1. Data Collection and Description 

The dataset specifically includes the Time column, which represents the exact time of the records, 

the Day of the week column, which indicates the day of the week, the columns for the number of 

different types of vehicles, the Total column for the total vehicle count, as well as the corresponding 

traffic conditions, as shown in Table 1. 

Table 1: Datasets. 

Time Date 
Day of the 

week 

Car 

Count 

Bike 

Count 
BusCount TruckCount Total 

Traffic 

Situation 

12:00:00 

AM 
10 Tuesday 31 0 4 4 39 Low 

12:15:00 

AM 
10 Tuesday 49 0 3 3 55 Low 

12:30:00 

AM 
10 Tuesday 46 0 3 6 55 Low 

12:45:00AM 10 Tuesday 51 0 2 5 58 Low 

1:00:00 AM 10 Tuesday 57 6 15 16 94 normal 

10:45:00 

PM 
9 Thursday 16 3 1 36 56 normal 
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11:00:00 

PM 
9 Thursday 11 0 1 30 42 normal 

11:15:00 

PM 
9 Thursday 15 4 1 25 45 normal 

11:30:00 

PM 
9 Thursday 16 5 0 27 48 normal 

11:45:00 

PM 
9 Thursday 14 3 1 15 33 normal 

2.2. Model 

eXtreme Gradient Boosting (XGBoost) is an efficient implementation of Gradient Boosting Decision 

Trees (GBDT) that can handle missing values, nonlinear relationships, and large-scale data. It is 

widely used in various machine learning competitions. 

Random Forest (RF) is an ensemble model based on decision trees. It builds multiple trees through 

random sampling of data and features, then aggregates their predictions by voting or averaging, 

providing strong robustness and resistance to overfitting. 

Extreme Randomized Trees (ERT) are similar to RF but add more randomness by selecting split 

points completely randomly, which speeds up training and improves generalization. 

K-Nearest Neighbors (KNN) is an instance-based model that predicts the class of new data by 

calculating the distance (e.g., Euclidean distance) between samples. It works well for small datasets 

but performs poorly with high-dimensional data. 

LR is a linear model commonly used for binary classification problems. It outputs a probability 

value and is suitable for linearly separable data. 

Ridge is a linear model with regularization. It uses L2 regularization to constrain model complexity, 

thus improving robustness and preventing overfitting. 

Histogram-based Gradient Boosting Classifier (HBC) is a powerful model suitable for large-scale 

data. It improves training efficiency using histogram binning techniques and is applicable for both 

classification and regression tasks. 

Bootstrap Aggregating (Bagging) is a parallel ensemble learning method that performs multiple 

bootstrap resampling of the dataset to train several base classifiers, then averages or votes on their 

predictions to enhance stability and accuracy. 

Gradient Boosting Trees (GBDT) is an iterative decision tree ensemble model that optimizes 

model performance by progressively minimizing a loss function, making it suitable for complex 

datasets. 

GNB is a probability-based classification method that assumes features are independent and follow 

a Gaussian distribution. It works well with simple, small datasets. 

Support Vector Classification (SVC) is a powerful classification model, particularly suited for 

high-dimensional data. It can handle non-linearly separable data using kernel functions (such as linear 

or RBF kernels). 

3. Results and Discussion 

3.1. Experimental configuration 

The training and testing sets are split from the original dataset at a ratio of 9:1. Regularization is 

applied only to XGBoost, HBC, Bagging, and GBC, with both XGBoost and HBC having a learning 

Table 1: (continued). 
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rate of 0.001, while GBC has a learning rate of 0.005. The models all use the default loss functions; 

XGBoost uses the logistic loss function (also called log loss), and HBC uses categorical cross-entropy, 

which is a loss function used for classification tasks. Its form is similar to log loss and measures the 

difference between the model's predicted probability distribution and the true distribution. Bagging 

does not directly use a loss function. Instead, it generates the final prediction by voting or averaging 

the predictions of multiple base learners (by default, decision trees). GBC, like XGBoost, uses the 

log loss function. 

3.2. Experimental result 

As shown in Table 2, XGBoost, RF, HBC, Bagging, and GBC achieved an accuracy close to or 

reaching 100% under normal conditions. Even with noise interference, the accuracy only slightly 

decreased, maintaining between 87% and 91%, demonstrating strong robustness. These models also 

showed good generalization ability in the generalization tests. SVC, ERT, and KNN had accuracy 

close to 90% under normal conditions and performed stably in both noise and generalization tests, 

especially SVC and ERT, which showed strong stability. GNB performed the worst, with a significant 

drop in accuracy under noise interference and generalization tests, indicating weak resistance to 

disturbance and poor generalization ability, making it unsuitable for complex tasks in real-world 

scenarios. Overall, XGBoost, RF, HBC, Bagging, and GBC performed the best in terms of robustness 

and generalization, while other models like Ridge, GNB, and DC have more limited applicability. 

The details are shown in Table 3, Table 4 and Table 5. 

Table 2: Default Accuracy. 

XGBoost 1.00(+/-0.00) 

RF 1.00(+/-0.00) 

ERT 0.97(+/-0.01) 

KN 0.93(+/-0.01) 

LG 0.90(+/-0.02) 

Ridge 0.77(+/-0.01) 

HBC 1.00(+/-0.00) 

Bagging 1.00(+/-0.00) 

GBC 1.00(+/-0.00) 

GNB 0.81(+/-0.02) 

SVC 0.94((+/-0.01) 

Table 3: Accuracy under Noise. 

XGBoost 0.95(+/-0.01) 

RF 0.94(+/-0.01) 

ERT 0.94(+/-0.00) 

KN 0.93(+/-0.01) 

LG 0.83(+/-0.01) 

Ridge 0.70(+/-0.01) 

HBC 0.94(+/-0.01) 

Bagging 0.94(+/-0.01) 

GBC 0.94(+/-0.01) 

GNB 0.78(+/-0.01) 

SVC 0.92(+/-0.01) 
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Table 4: Generalization Accuracy. 

XGBoost 1.00(+/-0.00) 

RF 0.99(+/-0.00) 

ERT 0.98(+/-0.00) 

KN 0.96(+/-0.01) 

LG 0.84(+/-0.02) 

Ridge 0.73(+/-0.02) 

HBC 1.00(+/-0.00) 

Bagging 1.00(+/-0.00) 

GBC 1.00(+/-0.00) 

GNB 0.78(+/-0.01) 

SVC 0.94(+/-0.01) 

Table 5: Regularization Accuracy. 

XGBoost 0.98(+/-0.00) 

HBC 0.99(+/-0.00) 

Bagging 1.00(+/-0.00) 

GBC 0.95(+/-0.01) 

 

By controlling the sub-sample ratio, among other factors, the generalization ability of the model 

is improved. Cross-validation (cross_val_score) was then used to evaluate the performance of each 

model on the training data, outputting the average accuracy and standard deviation for each model 

(as shown in Figure 1), to compare their performance and stability. 

 

Figure 1: Accuracy with Regularization (Picture credit: Original). 

From the learning curves of these four models (as shown in Figure 2, Figure 3, Figure 4, and Figure 

5), it can be seen that, overall, overfitting is not significant. XGBoost may exhibit slight overfitting, 

as the training accuracy is close to 1, while the testing accuracy is slightly lower, with a noticeable 

gap between the two. However, as the training data increases, the performance on the test set 

gradually improves. Bagging shows a small difference between the training and testing accuracy, and 

the curve tends to stabilize, demonstrating good generalization ability. The training accuracy of GBC 

is slightly higher than the testing accuracy, but the gap is not large, and the test performance improves 
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as the data increases, with no obvious overfitting. The training and testing accuracies of HBC almost 

overlap, indicating strong generalization ability and no overfitting issues. 

 

Figure 2: XGBoost Learning Curve (Picture credit: Original). 

 

Figure 3: HGB Learning Curve (Picture credit: Original). 
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Figure 4: GBC Learning Curve. (Picture credit: Original). 

 

Figure 5: Bagging Learning Curve (Picture credit: Original). 

Regularization significantly improved the robustness and generalization ability of the models. 

Under both default and noisy conditions, the accuracy of the XGBoost, HBC, Bagging, and GBC 

models was relatively high, but some models, such as GNB, exhibited instability under noisy 

conditions. However, after regularization, the accuracy of the models further improved in the 

generalization test, with a significant reduction in variability (standard deviation). Notably, the 

Bagging model achieved an accuracy of 1.00, showing the best performance. This indicates that 

regularization enhances the stability of the model when dealing with noise and distribution changes, 

and the performance of different models highlights the importance of selecting the appropriate model 

and regularization method. Among them, Bagging, XGBoost, and HBC demonstrated good 

performance and balance in this experiment. 
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4. Limitations and Future outlooks 

The results of this experiment are based solely on the dataset used, and further investigation into how 

the model's performance may change with different datasets has not been conducted. Since different 

datasets have distinct features and structures, changing the dataset could lead to variations in the 

model’s performance during training. The models in the experiment were used with their default 

hyperparameter configurations, without any hyperparameter tuning. In fact, many machine learning 

models have a variety of hyperparameters, and the choice of these hyperparameters can significantly 

impact the model’s performance. However, this experiment did not adjust or optimize these 

hyperparameters, and all models used the default settings. In practical applications, hyperparameter 

tuning could further improve the model’s accuracy and stability. 

Although this experiment has demonstrated the performance of different models on the current 

dataset, future research could optimize the models to enhance their performance and generalization 

ability. Firstly, the dataset used in the experiment has certain limitations, and more diverse datasets 

could be introduced in the future. Secondly, hyperparameter tuning is one of the key factors for 

improving model performance, and optimizing the model’s hyperparameters could significantly 

increase accuracy. In terms of model selection, deep learning models such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown excellent performance in 

handling complex tasks, and their application in this experimental task could be explored in the future. 

With these improvements, future research is likely to further enhance the model's performance and 

application effectiveness, making it more reliable and efficient in real-world scenarios. 

5. Conclusion 

This experiment analyzed the limitations of different models in traffic flow prediction and improved 

their performance through several measures. First, increasing the number of data samples and 

shuffling the dataset helped enhance the model’s learning ability, especially in cases of data 

imbalance or scarce samples. This approach effectively boosted the model's generalization ability. 

Second, by incorporating robustness and generalization tests, the model's stability was further 

improved when facing data variations and noise, ensuring its reliability in different environments. 

Finally, introducing regularization methods and analyzing the learning curves helped identify and 

prevent overfitting, thereby improving the model's generalization capability and adaptability to 

unseen data. This study highlights the tremendous potential of machine learning and deep learning in 

the field of traffic prediction. In the future, optimizing the model's hyperparameter settings could 

further improve performance, providing more accurate and efficient predictive tools for practical 

applications. 
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