

Review on the FPGA design optimization for ASIC

Xiaohaoyang Lei

School of Intelligent Engineering, Xi’an Jiaotong-liverpool University, SuZhou,

JiangSu, 215123, China.

Xiaohaoyang.LEI20@student.xjtlu.edu.cn

Abstract. FPGA is a product of further development on programmable devices such as PAL

and GAL. It is not only a chip, but a design pattern. With the rapid growth in FPGA

performance and density, its complete top-down model can be applied to the development of

similar ASICs while improving the technology itself. This paper shows that a summary

analysis of previous articles can conclude that the application of FPGA design to ASICs can

lead to optimization of many aspects. Architecture-level embedding and mapping

transformation are the current mainstream application methods, both of which can bring strong

economic and time benefits. Meanwhile, there are various issues that need special

consideration in the application process which is related to the question of whether or not to

map and convert. Finally, according to the analysis, we still need to solve two important issues

which are the lack of automatic mapping tools and the lack of a unified function library in the

future.

Keywords：FPGA, ASIC, VHDL, Hardware Description Language, Architecture Hierarchy

Embedding.

1. Introduction

The FPGA device belongs to a kind of semi-custom circuit in an ASIC. It is a programmable logic

array. Compared with the original device, it has more gate circuits. Compared with the traditional

mode of chip design, FPGA chip and Design chips are not limited to research and development, but

can be optimized by domain-specific products and designs, and optimized by specific chip models.

Advanced CMOS process technologies (0.5–0.3 5 microns) and their architectures are changing the

complexity and functionality of FPGA, with improved features being found for rapid prototyping of

ASIC and improvements in power consumption and computation. In general design and use cases,

ASIC and FPGA have advantages and disadvantages.The FPGA has extremely high

reprogrammability, and the logic gate array can be modified anytime and anywhere. Using this feature

can reduce the reconfiguration consumption of hardware. Another great advantage of FPGA is that,

like ASIC, they can be designed and described using block diagrams or Verilog HDL. This greatly

enhances the interoperability between them. But compared with ASIC, the ability of FPGA to perform

arithmetic operations is not satisfactory [1], so it is a possible and feasible solution to use the design

advantages of FPGA as the base plate to improve.

It is clear that there is no standard on how to apply FPGA design, but research and work basically

revolve around architecture, description language, and front-end tools. At the architectural level,

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

524

research more options to embed smaller FPGA units in ASIC systems to achieve improvement. This

allows designers to set up algorithms in "reprogrammable" logic, and the embedded LiquidLogic Core

(LL) architecture from LSI Logic, Milpitas, CA, provides the ability to modify data adjustment

algorithms in real-time during immersive experiments [2].The co-design at the architectural level is

similar to the semi-custom design scheme of ASIC. While completing the design requirements, it is

flexible and can add or reduce functional units in time according to the requirements.

Thanks to the interoperability of VHDL, FPGA circuits may be mapped to other platforms, and a

direct conversion can also be achieved. Most FPGA provide some pre-balanced, high-speed, low-skew

routing lines. Therefore, these high-speed clock lines should be used more when designing ASIC in

the same language in FPGA systems to improve prototype performance. Furthermore, a set of FPGA

clock map buffers can be allowed to replace the ASIC clock tree in the prototype at the packaging

stage [3].

This paper mainly introduces the research status of FPGA design system optimization of ASIC by

means of review and qualitative analysis, and summarizes the relevant optimization methods. It is

hoped that the optimization method can provide directional help for future research in the field of

improvement directions.

2. Overview

2.1. ASIC

ASIC is divided into full-custom and semi-custom. Full custom design requires the designer to

complete the design of all circuits, so it requires a lot of manpower and material resources. Although

the flexibility is good, the development efficiency is low. If the design is ideal, a full custom can run

faster than semi-custom ASIC chips. Semi-custom uses the standard logic cells in the library (Standard

Cell), and can select SSI (gate circuit), MSI (such as adder, comparator), data path (such as ALU,

memory, bus from the standard logic cell library during design), memory, and even system-level

modules (such as multipliers, microcontrollers) and IP cores. Since these logic units have been laid out,

and the design is more reliable, the designer can more easily complete the system design. Modern

ASIC often contain an entire 32-bit processor, storage units like ROM, RAM, EEPROM, Flash, and

other modules. Such ASIC are often referred to as SoC (systems on a chip).

2.2. FPGA

FPGA is the development branch of ASIC. Generally, the architecture system is modeled through

block diagrams and VHDL, and EDA software is used to model, and simulate, and produce functional

modules, which can be used after configuration to package templates. The biggest difference from

ASIC is that it does not require users to participate in the arrangement of circuits and logic gates in the

system. In addition, algorithms and circuit data can be adjusted in real time to achieve real-time

modification and avoid resource waste. The semi-customized modular circuit is the biggest feature of

FPGA. In experiments, this feature is used to improve the limitations of ASIC and to build the

required architecture and design environment during mapping. Designers can no longer focus on the

circuit diagram but must consider the placement of more modules to achieve greater area utilization.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

525

3. Optimized path

3.1. Embedding at the architectural level

Figure 1. FPGA architecture for ASIC-FPGA co-design.

3.1.1. Hybrid architecture. The ASIC-FPGA co-design architecture is shown in Figure 1, which

consists of the logic block LB in Figure 2.The switch block of Figure 3 , the connection block of

Figure 4, and the ASIC block that realizes the main functions are constituted. LB is an FPGA

composed of RTL design methods. Because of the use of RTL, the SB and CB of traditional FPGAs

are developed using transistor switches, and their structure is different from Figure 3 and Figure 4 [5].

Figure 2. Structure of the lb.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

526

Figure 3. Structure of the sb.

Figure 4. Structure of the cb.

CB increases the connection between ASIC and FPGA. This makes the architecture easier to quickly

replace circuits composed of LB with ASIC. Adding a CB expands the connection, and from an area

perspective, reducing the CB allows the LB to go directly to the ASIC.

3.1.2. LL kernel architecture. The LL (Liquid Logic) kernel architecture has the same design idea but

is reflected in the architecture. LL cores are provided by LSI according to customer specifications. The

LL architecture consists of a GDS2 hard macro containing a multiscale array (MSA) and a soft

gate-level core. One to sixteen hex blocks and an I/O wrapper make up the MSA (providing the ATPG

scan function and the ASIC buffered acceptance of PLC signals). The soft core acts as a programming

interface, and the programmable interface is driven by serial EEPROM and/or AMBA AHB bus

interfaces.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

527

Figure 5. MSA Architecture.

Figure 5 shows the internal structure of MSA. It can be seen that it is composed of multiple large

arrays and the smallest unit of the array is a hexadecimal block, and the array size is distinguished

according to the smallest unit in the area. The hex block contains 4 ALU that are configurable at the

RTL level. Each ALU consists of 4 functional units and a controller, and adjacent ALU can be

synthesized into larger units such as Carry-Look-Ahead logic for high-speed arithmetic operations and

logic connection circuits for complex logic and control applications.

3.1.3. Development status.

Figure 6. Simulink-based ASIC design and verification environment.

According to the introduction and analysis above, the technical utilization of the architecture relies

heavily on computer-aided tools. Most existing aids convert hardware description languages such as

Verilog and VHDL RTL code to gate-level code, such as ASIC CAD. While some theoretical work has

been done in creating "reconfigurable" processing and advancing the use of discrete FPGA devices

and enabling algorithm acceleration based on this, it is still early days for commercial tools and

practical applications. But there are already companies promoting commercialization. FPGA vendors

and EDA companies are teaming up to promote a standard set of megafunctions, or library of

parameterized modules, or LPM, that can be directly recognized and translated by auxiliary tools [6].

If this goal can be achieved, then the code to design the FPGA prototype and the ASIC will be exactly

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

528

the same. This means that the time required to convert between the two technologies will be 0, but the

conversion between the two is still dependent on the architecture chosen by the designer.

The benefits of FPGA design at the architectural level are rapidly breaking the boundaries between

programmable and fixed-function markets. There is a great deal of work and research surrounding the

translation of abstract theory and laboratory findings into practical commercial use, such as design

logic and C-like design languages [7][8][9]. There are also many architectural solutions similar to

those described above [10][11]. In general, this attempt is still in the laboratory stage, and CAD does

not have the matching function to perfect the idea.

3.2. Mapping transformation

Figure 7. Hybrid ASIC/FPGA Flow.

In recent years, there have been more and more schemes to use FPGA systems to make ASIC

prototypes to complete ASIC verification. Due to the rapid growth of ASIC tape-out cost and design

cost, the current typical 90nm SOC design tape-out cost is estimated to be about 1 M. This reflects the

importance of using FPGA systems to avoid repeated iterations [12].

Mapping means converting ASIC primitives to FPGA logic cells during the design process in order

to reverse the conversion, so the main means is the similar component interoperability transformation.

The mapping process requires attention to the issues given below.

The utilization of each partition should be fully considered when designing a prototype with an

FPGA system. Although there are many auxiliary tools that can automatically give the partition plan,

the automatically given partition sometimes does not meet the specific needs of the prototype.

Therefore, a graphical input tool should be used to manage architectural-level zoning planning. Take

the FPGA as a module in the design process, and adjust the module according to the needs to meet the

designers' requirements for verification and modification.

As mentioned above, the mapping process of the MAC module can be used as an example. A

straightforward but inefficient mapping scheme is given in Figure 7a due to the inability to interact

with the accumulation registers in the DSP48E. Another improved scheme is shown in 7b, where the

adders of the pipelined MAC module have been well mapped into the DSP48E. But another problem

arises that the same register cannot receive all the pipelines. Then Figure 7c gives the final solution

and the way we would like to see the mapping. It avoids the functional problems caused by direct

mapping while relatively improving the performance of the MAC and the DSP48E.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

529

Figure 8. MAC units mapped to DSP48E blocks.

Gated clocks should be avoided in the design of FPGA template systems. Clock gates are used in

ASIC to power down the clock tree when needed to save power and extend the life of portable device

power supplies. However, gated clocks can slow down operations in FPGA because most FPGA

require higher-speed, low-skew clock inputs.

The time and economic costs are increasing, and the more efficient and effective conversion of

FPGA systems into ASIC is recognized by more and more people. coding, SDC support, specific and

identical function libraries, and other issues that need to be considered when designing. Using existing

technology to apply a more convenient design method to ASIC is an economical way to expand and

supplement. There have been many advances in software algorithms in recent years, but these

hardware and software systems have no templates and are used ad hoc. Considering the dependencies,

we still need to focus on developing a set of software aids that can automatically map transformations.

4. Conclusion

The cost of design tape-out is increasing as global supply chains are blocked. The addition of an

FPGA system greatly simplifies the design process of an ASIC. Embedding FPGA units at the

architectural level can improve design flexibility, allowing designers more freedom to modify and

adjust the modules after simulation instead of restarting iterations. Meanwhile, the addition of small

cells increases area utilization, providing improvements in economics. The embedded FPGA can also

make up for the data gap and increase the channel to improve the operation speed. Thanks to the

interoperable front-end platform and hardware description language, FPGA and ASIC can be

converted into each other under a special design environment such as a special architecture. When two

otherwise distinct technologies can be seamlessly translated into each other, it provides huge time

advantages and cost savings.

Overall, we need an automated mapping system that goes beyond existing tools to revolutionize the

industry. The new system requires strong interoperability and a library of functions that can describe

both circuits at the same time.

References

[1] Balboni, A., Valenti, L. (1996). ASIC design and FPGA design: A unified design methodology

applied to different technologies. In: Hartenstein, R.W., Glesner, M. (eds)

Field-Programmable Logic Smart Applications, New Paradigms and Compilers. FPL 1996.

Lecture Notes in Computer Science, vol 1142. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-61730-2_38

[2] R. Madurawe (2010), "3D FPGA & 3D ASIC worlds first unified 3D IC design platform," 2010

IEEE Hot Chips 22 Symposium (HCS), 2010, pp. 1-16, doi:

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

530

https://doi.org/10.1007/3-540-61730-2_38

10.1109/HOTCHIPS.2010.7480079.

[3] O. Melnikova, I. Hahanova and K. Mostovaya, "Using multi-FPGA systems for ASIC

prototyping," 2009 10th International Conference - The Experience of Designing and

Application of CAD Systems in Microelectronics, 2009, pp. 237-239.

[4] T. Sato, S. Chivapreecha, P. Moungnoul and K. Higuchi (2016), "An FPGA Architecture for

ASIC-FPGA Co-design to Streamline Processing of IDSs," 2016 International Conference

on Collaboration Technologies and Systems (CTS), 2016, pp. 412-417, doi:

10.1109/CTS.2016.0079.

[5] T. Sato, S. Chivapreecha, P. Moungnoul and K. Higuchi, "RCA on FPGAs Designed by the

RTL Design Methodology and Wave-Pipelined Operation", Proc. of ECTI-CON 21016, pp.

1251.1-1251.6, 2016.

[6] Buist, R. H. (1999). FPGA/ASIC design software. Ecn, 43(3), 115. Retrieved from

https://www.proquest.com/trade-journals/fpga-asic-design-software/docview/222217476/se-

2?accountid=153081

[7] Ahi Alex Ye, Nagaraj Shenoy and Prithviraj Banerjee, "A C Compiler for a Processor with a

Reconfigurable Functional Unit", Proceedings of the 37th ACM/IEEE conference on Design

automation conference, 2000. Retrieved from https://doi.org/10.1145/329166.329187

[8] Meenakshi Kaul, Ranga Vemuri, Sriram Govindarajan and Iyad Ouaiss, "An Automated

Temporal Partitioning and Loop Fission approach for FPGA based reconfigurable synthesis

of DSP applications", Proceedings of the 36th ACM/IEEE conference on Design automation

conference, pp. 616-622, 1999. Retrieved from https://doi.org/10.1145/337292.337581

[9] Brad L. Hutchings and Brent E. Nelson, "Using General-Purpose Programming Languages for

FPGA Design", Proceedings of the 37th ACM/IEEE conference on Design automation

conference, pp. 561-566, 2000. Retrieved from https://doi.org/10.1145/309847.310010

[10] Masakazu Yarnashina and Masato Motomura, "Reeonfigurable Computing: Its Concept and a

Practical Embodiment using Newly Developed Dynamically Reconfigurable Logic (DRL)

LSI", Proceedings on the 2000 conference on Asia and South Pacific design automation, pp.

329-332, 2000. Retrieved from https://doi.org/10.1145/368434.368659

[11] Norben Imlig, Ryusuke Konishi, Tsunemichi Shiozawa, Kiyoshi Oguri, Kouichi Nagami,

Hideyuki Ito, et al., "Communicating Logic: An Alternative Embedded Stream Processing

Paradig", Proceedings of the ASP-DAC 2000, pp. 317-322, 2000. Retrieved from

https://doi.org/10.1145/368434.368666

[12] M. Santarini, "ASIC prototyping: make versus buy", EDN, Dec. 2005. Retrieved from

https://www.researchgate.net/publication/292859931_ASIC_prototyping_Make_versus_buy

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/2023317

531

https://www.proquest.com/trade-journals/fpga-asic-design-software/docview/222217476/se-2?accountid=153081
https://www.proquest.com/trade-journals/fpga-asic-design-software/docview/222217476/se-2?accountid=153081
https://doi.org/10.1145/329166.329187
https://doi.org/10.1145/337292.337581
https://doi.org/10.1145/309847.310010
https://doi.org/10.1145/368434.368659
https://doi.org/10.1145/368434.368666

