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Abstract: In recent years, precision motion systems have played an increasingly important 

role in scientific research and engineering applications. Among them, compliant mechanisms 

are typical enabling components for precise motion. Establishing models for compliant 

mechanisms is crucial for their design and analysis. In this paper, stiffness modeling is 

conducted for four typical compliant mechanisms: single parallelogram compliant 

mechanisms, mirrored single parallelogram compliant mechanisms, double parallelogram 

compliant mechanisms, and mirrored double parallelogram compliant mechanisms. To 

validate the accuracy of the proposed models, three-dimensional models of the compliant 

mechanisms were constructed using UG software, and finite element analysis (FEA) was 

performed using ANSYS software. The results demonstrate that the deviation between the 

theoretical stiffness and simulated stiffness of the four compliant mechanisms is less than or 

equal to 3.5%. The stiffness models developed for the compliant mechanisms lay a foundation 

for the design of complex compliant motion systems. 
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1. Introduction 

With the increasing demand for high-precision machining and inspection, especially in fields like 

semiconductor manufacturing, such as wafer and silicon processing and inspection, motion stages are 

required to achieve higher precision and stability. Traditional motion stages are prone to vibrations 

caused by their own movement or external forces [1], which affect machining accuracy. In contrast, 

compliant motion stages can effectively reduce vibrations and enhance precision through flexible 

support structures and advanced drive monitoring technologies. 

From the perspective of complex motion requirements, certain specialized applications demand 

motion stages with strict orthogonality in planar motion directions or precise micro-rotational motion 

in the vertical direction. Traditional air-bearing stages struggle to meet these demands, while 

compliant motion stages can achieve more complex motion functionalities through structural designs 

such as flexible connections and ball-joint mountings. 

According to current research, continuous structural optimization of compliant motion stages has 

been a focus for researchers. For example, Suzhou Xihang Semiconductor Technology Co., Ltd. has 

proposed a compliant motion stage combining components such as support beams, end connectors, 

air-floating feet, side air-floating pads, and side brake pads, enabling flexible support for the beams 
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and precise spatial positioning. In terms of precision improvement, the iFM intelligent compliant 

motion system by DaHuan Robotics achieves a repeatability of ±5 µm. Regarding speed and 

acceleration, it achieves a maximum acceleration of 40 m/s². Advanced control algorithms and 

technologies are employed in compliant motion stages to realize more precise motion control and 

vibration suppression. 

This study involves the fundamental mechanical properties of materials, including elastic modulus, 

Poisson’s ratio, and yield strength. Through theoretical calculations and simulation analyses [2]-[4], 

materials meeting the basic performance requirements of compliant motion stages [5],[6] (e.g., 

withstanding specific loads and achieving designated deformation levels) were preliminarily selected. 

Theoretical stiffness models were developed for single-parallelogram, mirrored single-parallelogram, 

double-parallelogram, and mirrored double-parallelogram compliant mechanisms. Finite element 

analysis (FEA) was employed to precisely simulate the deformation behavior of different aluminum 

compliant mechanisms under varying loads, and force-displacement curves were plotted to obtain the 

actual stiffness data of the designed compliant mechanisms. 

2. Modeling and Analysis of Compliant Motion Mechanisms 

Compliant mechanisms are a novel type of mechanism that primarily utilize the elastic deformation 

of components to transmit motion or force [7]. Unlike traditional rigid mechanisms, the components 

of compliant mechanisms possess a certain degree of flexibility. During operation, these flexible 

components undergo recoverable deformation to achieve specific functions. From a materials 

perspective, compliant mechanisms often employ materials with excellent elasticity. These 

mechanisms offer significant advantages, such as reducing friction and wear between moving parts 

and enabling more complex motion trajectories. Moreover, they play a critical role in applications 

requiring high precision and small displacements. 

The goal of this modeling effort is to accurately describe the mechanical behavior, motion 

characteristics, and interactions with external environments of compliant motion stages through 

mathematical and physical models. This provides a theoretical foundation and analytical tools for 

experimental design, performance prediction, control strategy formulation, and optimization research. 

2.1. Double Parallelogram Mechanism 

When an external force F is applied to a double parallelogram mechanism in its initial stage (as shown 

in Figure 1), the total deformation of the mechanism can be observed. Calculating the stiffness of the 

mechanism is crucial for comprehensively understanding the characteristics of the mechanism under 

external forces and evaluating its performance in practical applications. Such calculations help 

accurately predict the deformation of the mechanism during operation, providing critical data for 

engineering design and practical production. This ensures that the mechanism meets specific 

application requirements and quality standards. 

 

Figure 1: Double Parallelogram Compliant Mechanism 
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It is worth noting that each component of the mechanism is subjected to a combination of moment 

M and force F. Under these conditions, and considering the boundary conditions of rotational and 

translational motion, the following relationships can be derived: 

 0 =
𝐹𝑙

2𝐸𝐼
−

𝑀𝑙

𝐸𝐼
                            (1) 

 δ𝑥 =
𝐹𝐿3

3𝐸𝐼
-
𝑀𝑙2

2𝐸𝐼
                             (2) 

where ∆x represents the transverse deflection, E is the material’s Young’s modulus, and I = bh^3/12 

is the moment of inertia of the cross-section about the neutral axis. 

 𝐹 =
2𝑀

𝐿
                               (3) 

 ∆𝑥 =
𝐹𝑙3

12𝐸𝐼
                              (4) 

Since the four flexible components have the same length l, the above relationships hold, i.e., δx = 

△x/2 , where △x represents the displacement on one side of the double parallelogram compliant 

mechanism. Based on these known conditions and derived relationships, the stiffness of the 

mechanism in the direction of the applied force can be further calculated, as shown in equation (5). 

This stiffness calculation is crucial for comprehensively understanding the characteristics of the 

mechanism under external forces and evaluating its performance in practical engineering applications: 

 K=
𝐹𝑥

∆𝑥
=

2𝐹

2𝛿𝑥
=
𝐸𝑏ℎ

3

𝑙3
                           (5) 

2.2. Single Parallelogram Mechanism 

The elastic modulus, Poisson’s ratio, density, and other parameters of the material used in the 

compliant motion stage are obtained through material tests and used as inputs for the model. The 

stiffness k of a single parallelogram mechanism (as shown in Figure 2) is twice that of the double 

parallelogram mechanism, i.e., 2K. Boundary conditions for the model, such as fixed constraints and 

sliding constraints, are determined based on the actual installation and operating conditions of the 

experiment. Additionally, loading parameters such as driving forces and load forces are set according 

to the loading scheme designed for the experiment. 

 

Figure 2: Single Parallelogram Compliant Mechanism 
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2.3. Mirrored Single Parallelogram Mechanism 

The actual installation method of the compliant motion stage in the experimental setup determines 

which parts are fully fixed. For example, if the motion stage is bolted to a rigid base, the nodes 

corresponding to the bolted connections in the model are set with full displacement constraints. This 

means no displacement is allowed in the three translational directions (x,y,z) or the three rotational 

directions (θx, θy, θz). The upper and lower parts of the mechanism provide structural support. The 

theoretical stiffness k of the mirrored single parallelogram mechanism (as shown in Figure 3) is four 

times that of the single parallelogram mechanism, i.e., 4K. 

 

Figure 3: Mirrored Single Parallelogram Compliant Mechanism 

2.4. Mirrored Double Parallelogram Mechanism 

The external loads experienced by the compliant motion stage during actual operation, such as the 

weight of transported objects or cutting forces during processing, are considered. The magnitude, 

direction, and application point of the load forces are determined using force sensors or theoretical 

calculations and are applied in the model accordingly. For instance, in an experiment simulating the 

motion stage transporting heavy objects, the load force is determined based on the object’s mass and 

gravitational acceleration. This load is then applied to the contact area between the motion stage and 

the object to analyze the mechanical performance and deformation of the motion stage under the 

applied load. The theoretical stiffness k of the mirrored double parallelogram mechanism (as shown 

in Figure 4) is twice that of the double parallelogram mechanism, i.e., 2K. 

 

Figure 4: Mirrored Double Parallelogram Compliant Mechanism 
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3. Simulation Data 

The finite element model is used to discretize the structure of the compliant motion stage. Based on 

the principles of mechanics of materials and elasticity theory, the mechanical relationships between 

nodes and elements are constructed to simulate the stress-strain distribution and deformation under 

different loads (e.g., gravity, driving force, frictional force). The finite element model is chosen due 

to the complex structure of the compliant motion stage, involving multiple materials and intricate 

geometries. The finite element method effectively handles such complexity, providing detailed local 

and global mechanical information. 

The model is created using the engineering simulation software ANSYS. First, the material 

properties of aluminum, such as density and elastic modulus, are configured in ANSYS. The UG 

model is then imported into the ANSYS software, and the material is set to aluminum. A Cartesian 

coordinate system is established. The surface of the model is meshed, with the grid size for the beams 

being half the size of the rest. The static structure of the model is then edited by selecting the support 

surface and the load surface. A load of 10 N is applied perpendicular to the beam’s surface outward, 

incremented in 10 steps of 1 N each. Finally, simulation data are solved and compared with theoretical 

values to observe the relationship between the two datasets. 

3.1. Single Parallelogram Mechanism 

In the single parallelogram compliant motion mechanism (as shown in Figure 5), the dimensions of 

the beam are 1mm*20mm*20mm. The UG model is imported into ANSYS, and the material is set to 

aluminum, with its hardness and elastic modulus data improved. A Cartesian coordinate system is 

established [8]-[10], and the grid size is set to 0.5mm*0.5mm. The right side of the model is chosen 

as the support surface, and a force perpendicular to the surface is applied inward. The force magnitude 

ranges from 1 to 10 N, divided into ten steps, with each step increasing by 1 N. The stiffness values 

are solved, and a finite element analysis curve is obtained. The finite element analysis deformation 

results for the single parallelogram mechanism are shown in Figure 5, and the finite element analysis 

data results are shown in Figure 6. 

 

Figure 5: Finite Element Analysis Deformation Results of Single Parallelogram Compliant 

Mechanism 
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Figure 6: Finite Element Analysis Data Results of Single Parallelogram Compliant Mechanism 

By substituting the dimensions into theoretical formula (5), the theoretical stiffness calculation 

result is obtained as shown in formula (6): 

 `𝐾1=
2𝐸𝑏ℎ

3

𝑙3
=3.55×10

5
N/m                       (6) 

Based on simulation results, the stiffness calculation result is as follows: 

 𝐾′
1
=

1

2.7688×10
−6

N/m=3.612×10
5
N/m                  (7) 

After calculation, the deviation between the theoretical stiffness and simulated stiffness of the 

single parallelogram compliant mechanism is 1.9%. 

3.2. Mirrored Single Parallelogram Mechanism 

In the mirrored single parallelogram compliant motion mechanism (as shown in Figure 7), the beam 

dimensions are 1mm*20mm*20mm (the dimensions of all four beams are identical). The UG model 

is imported into ANSYS, and the material is set to aluminum, with its hardness and elastic modulus 

data improved. A Cartesian coordinate system is established [8]-[10], and the grid size is set to 

0.5mm*0.5mm. The right side of the model is chosen as the support surface, and a force perpendicular 

to the surface is applied inward. The force magnitude ranges from 1 to 10 N, divided into ten steps, 

with each step increasing by 1 N. The stiffness values are solved, and a finite element analysis curve 

is obtained. 

The finite element analysis deformation results for the mirrored single parallelogram mechanism 

are shown in Figure 7, and the finite element analysis data results are shown in Figure 8. 

 

Figure 7: Finite Element Analysis Deformation Results of Mirrored Single Parallelogram Compliant 

Mechanism 
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Figure 8: Finite Element Analysis Data Results of Mirrored Single Parallelogram Compliant 

Mechanism 

By substituting the dimensions into theoretical formula (5), the theoretical stiffness calculation 

result is obtained as shown in formula (8): 

 𝐾2=
4𝐸𝑏ℎ

3

𝑙3
=7.1×10

5
N/m                         (8) 

Based on simulation results, the stiffness calculation result is as follows: 

 𝐾′
2
=

1

1.3585×10
−6

N/m=7.361×10
5
N/m                    (9) 

After calculation, the deviation between the theoretical stiffness and simulated stiffness of the 

mirrored single parallelogram compliant mechanism is 3.5%. 

3.3. Double Parallel Workpiece 

The double-parallel flexible mechanism (as shown in Figure 9) has beam dimensions of 1 mm*20 

mm*20 mm. The UG model is imported into the ANSYS engineering simulation software, where the 

material is set as aluminum, and its hardness and elastic modulus are defined. A Cartesian coordinate 

system is established [8]-[10]. The model is meshed with a grid size of 0.5 mm*0.5 mm, with the 

right side designated as the support surface. Force is applied perpendicularly inward, ranging from 1 

N to 10 N, divided into ten steps with a 1 N increment per step. Finally, the stiffness values are 

calculated, and the finite element analysis curve is generated. 

The deformation results from the finite element analysis of the double-parallel quadrilateral 

flexible mechanism are shown in Figure 9, while the data results are shown in Figure 10. 

 

Figure 9: Deformation Results of the Double-Parallel Quadrilateral Flexible Mechanism Finite 

Element Analysis 
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Figure 10: Data Results of the Double-Parallel Quadrilateral Flexible Mechanism Finite Element 

Analysis 

The theoretical stiffness calculation results are obtained by substituting the dimensions into 

Equation (5), as shown in Equation (10): 

 𝐾3=
𝐸𝑏ℎ

3

𝑙3
=1.775×10

5
N/m                      (10) 

Based on the simulation results, the stiffness is calculated as shown in Equation (11): 

 𝐾′
3
=

1

5.7578×10
−6

N/m=1.737×10
5
N/m                (11) 

The deviation between the theoretical stiffness and the simulation stiffness of the double-parallel 

quadrilateral flexible mechanism is 2.1%. 

3.4. Mirrored Double Parallel Workpiece 

The mirrored double-parallel flexible mechanism (as shown in Figure 11) has beam dimensions of 1 

mm*20 mm*20 mm. The UG model is imported into the ANSYS engineering simulation software, 

where the material is set as aluminum, and its hardness and elastic modulus are defined. A Cartesian 

coordinate system is established [8]-[10]. The model is meshed with a grid size of 0.5 mm*0.5 mm, 

with the right side designated as the support surface. Force is applied perpendicularly inward, ranging 

from 1 N to 10 N, divided into ten steps with a 1 N increment per step. Finally, the stiffness values 

are calculated, and the finite element analysis curve is generated. 

The deformation results from the finite element analysis of the mirrored double-parallel 

quadrilateral flexible mechanism are shown in Figure 11, while the data results are shown in Figure 

12. 

 

Figure 11: Deformation Results of the Mirrored Double-Parallel Quadrilateral Flexible Mechanism 

Finite Element Analysis 
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Figure 12: Data Results of the Mirrored Double-Parallel Quadrilateral Flexible Mechanism Finite 

Element Analysis 

The theoretical stiffness calculation results are obtained by substituting the dimensions into 

Equation (5), as shown in Equation (12): 

 𝐾4=
2𝐸𝑏ℎ

3

𝑙3
=3.55×10

5
N/m                       (12) 

Based on the simulation results, the stiffness is calculated as shown in Equation (13): 

 𝐾′
4
=

1

2.7688×10
−6

N/m=3.612×10
5
N/m                 (13) 

The deviation between the theoretical stiffness and the simulation stiffness of the mirrored double-

parallel quadrilateral flexible mechanism is 1.7%. 

4. Conclusion 

In this study, the mechanical analysis and stiffness model of a double-parallel quadrilateral flexible 

mechanism were first established. Subsequently, stiffness models were developed for single-parallel 

quadrilateral, mirrored single-parallel quadrilateral, double-parallel quadrilateral, and mirrored 

double-parallel flexible mechanisms based on the serial-parallel combinations of flexible mechanisms. 

To verify the stiffness models of the four types of flexible mechanisms, three-dimensional models 

were built using UG and finite element analysis was conducted using ANSYS software. The 

deviations between the theoretical stiffness and simulation stiffness for the respective mechanisms 

are as follows: 

Single-parallel quadrilateral flexible mechanism: 1.9% 

Mirrored single-parallel quadrilateral flexible mechanism: 3.5% 

Double-parallel quadrilateral flexible mechanism: 2.1% 

Mirrored double-parallel quadrilateral flexible mechanism: 1.7% 

The results of the finite element analysis validate the accuracy of the established stiffness models, 

laying a foundation for the design of flexible mechanisms. 
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