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Abstract: The integration of multimodal artificial intelligence (AI) has shown immense 

promise in enhancing cancer detection and diagnosis by leveraging diverse medical data, such 

as imaging, genomic, and clinical records. Traditional diagnostic methods, while effective in 

certain contexts, are limited by their inability to comprehensively capture the complex 

characteristics of diseases. Multimodal AI addresses these limitations by synthesizing data 

from multiple sources, leading to more precise and early-stage detection of cancer. This paper 

provides an in-depth analysis of key multimodal fusion methods, including feature-level 

fusion, decision-level fusion, and dataset-level fusion, each offering distinct advantages and 

challenges. By reviewing the current state of multimodal AI applications in cancer 

diagnostics, this paper highlights the strengths of these methods, explores their limitations, 

and discusses potential solutions for improving data privacy, evaluation standards, and 

explainability. Furthermore, the paper outlines future directions for multimodal AI, 

emphasizing its transformative potential in revolutionizing personalized cancer treatment and 

early intervention strategies. 

Keywords: Feature Fusion, Decision Fusion, Dataset-Level Fusion, Explainability in 

Multimodal Diagnostics. 

1. Introduction 

Early detection and accurate diagnosis of cancer are crucial for improving patient outcomes and 

survival rates. Traditional unimodal approaches, such as imaging studies, pathological analyses, and 

molecular biology techniques, have shown effectiveness in certain contexts. However, these methods 

often struggle to comprehensively capture the complex characteristics of diseases and are influenced 

by technical limitations, clinician experience, and data quality. Against this backdrop, the application 

of multimodal artificial intelligence (AI) represents a significant innovation in the field of cancer 

diagnosis. Multimodal AI integrates medical data from diverse sources, such as imaging data, 

genomic information, and clinical records, enabling comprehensive analysis of diseases from multiple 

perspectives. This capability significantly enhances diagnostic accuracy, particularly in the early 

stages of cancer, by identifying subtle lesions and enabling earlier intervention [1].  

Compared to traditional unimodal methods, multimodal AI offers the advantage of synthesizing 

diverse data types to produce more precise diagnostic results. For instance, by combining CT scans, 

MRI images, and genomic data, AI systems can detect early lesions and potential cancer risks that 

conventional methods might overlook. This multidimensional data fusion not only improves the 
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sensitivity of early disease detection but also enhances the ability to diagnose various cancer types 

and account for individual patient differences, supporting the development of personalized treatment 

plans [2]. 

This paper provides a comprehensive review of the application and development of different 

multimodal feature fusion techniques in cancer detection. It will explore major feature fusion methods 

and analyze how they integrate information such as imaging, genomics, and clinical data to improve 

diagnostic accuracy. Furthermore, this study examines the strengths and limitations of these methods, 

summarizes the current state of multimodal AI in cancer diagnosis, and identifies existing challenges. 

Finally, potential solutions and future directions for this field will be proposed. 

2. Multimodal Fusion 

The integration of features from different modalities is a critical research topic in multimodal AI. In 

the field of cancer detection and prevention, mainstream multimodal AI primarily employs three 

methods: feature-level fusion, decision-level fusion, and dataset-level fusion. 

2.1. Feature-Level Fusion 

Feature-level fusion integrates data from various modalities (e.g., CT and MRI) during the feature 

extraction phase. Deep learning models, such as Convolutional Neural Networks (CNNs) or 3D-

CNNs, are used to extract key features from each modality, which are then fused at deeper network 

layers to enable comprehensive lesion analysis [3]. The primary advantage of feature-level fusion lies 

in its holistic utilization of information and high accuracy, making it suitable for analyzing complex 

tumor characteristics at a deeper level. However, this method demands precise data alignment and is 

computationally intensive, posing higher requirements for system performance and resources [4].  

2.2. Decision-Level Fusion 

Decision-level fusion processes data from each modality independently, generating separate 

diagnostic results before combining them at the decision layer. This approach is more flexible in 

handling data and avoids the alignment challenges associated with feature-level fusion while 

requiring less computational power. However, decision-level fusion involves shallower information 

integration, which may result in the loss of certain feature details, potentially impacting diagnostic 

accuracy [5]. 

2.3. Dataset-Level Fusion 

Dataset-level fusion directly integrates data from various modalities (e.g., CT, MRI, and genomic 

data) at the data layer to create a unified dataset for model processing. Unlike feature-level or 

decision-level fusion, this method operates at the raw data stage, combining or concatenating inputs 

to incorporate multimodal information. Its advantage lies in preserving the original information from 

each modality, making it suitable for scenarios with high data heterogeneity. However, this approach 

requires standardization and normalization when processing data of varying formats and scales, 

increasing the complexity and computational burden. It is particularly effective for tasks that involve 

high-dimensional data and require the retention of raw information, such as joint analyses of CT 

images, genomic data, and clinical records [6]. 

2.4. Applicability of Fusion Methods 

Feature-level fusion is best suited for scenarios that demand deep analysis of interrelationships within 

multimodal data. For instance, integrating CT, MRI, and genomic data during the feature extraction 
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phase allows models to learn subtle inter-modal feature relationships, making it ideal for high-

accuracy cancer detection and segmentation tasks.  

Decision-level fusion is more appropriate for cases where multimodal data exhibit a high degree 

of independence or where data acquisition difficulty varies. For example, independent models can be 

trained on imaging, genomic data, and clinical text, and their diagnostic results can be aggregated at 

the decision layer. This approach is suitable for rapid diagnosis and applications involving 

heterogeneous data. Dataset-level fusion excels in scenarios requiring the integration of raw data from 

diverse modalities while maintaining information integrity. For example, combining CT and MRI 

images with genomic data and clinical records into a unified dataset enables models to learn 

interrelations among modalities at a single input level. This makes it well-suited for tasks involving 

highly heterogeneous data and comprehensive analyses, such as early tumor screening and 

multidimensional diagnosis. 

3. Applicability of Fusion Methods 

Feature-level fusion is ideal for tasks requiring deep analysis of multimodal data relationships, such 

as high-accuracy cancer detection and segmentation. Decision-level fusion is suited for tasks where 

data are independent or when quick diagnoses are needed, such as rapid imaging or genomic analysis. 

Dataset-level fusion excels in tasks needing raw data integration and the preservation of modality-

specific information, like early tumor screening and multidimensional diagnosis. Multimodal AI-

assisted cancer diagnosis and prediction 

3.1. Feature-Level Fusion 

Feature-level fusion integrates data by combining features extracted from different modalities during 

the feature extraction stage. A study by Cui et al. utilized stacked autoencoders (SAE) to process 

imaging data from the Cancer Genome Atlas (TCGA) dataset and genomic data, effectively reducing 

dimensionality and denoising the data. Extracted features were fused into a unified representation and 

optimized for classification using a multilayer perceptron (MLP), achieving a 15% improvement in 

diagnostic accuracy and sensitivity [7]. Another example is Zhang et al., which employed 3D 

convolutional neural networks (3D-CNNs) to integrate MRI modalities, such as T1, T2, and DWI, 

for cervical cancer detection. This approach captured intricate 3D spatial relationships between 

modalities, significantly improving Dice coefficients and sensitivity [8]. However, both methods 

highlight challenges in computational complexity and the reliance on high-quality, well-aligned 

datasets, underscoring the need for efficient preprocessing strategies in practical applications. 

3.2. Decision-Level Fusion 

Decision-level fusion aggregates predictions from independently trained models, offering a flexible 

way to handle heterogeneous data. Zhang et al. proposed a hybrid framework where CNN, Long 

Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models processed imaging, genomic, 

and clinical data, respectively. Predictions were integrated using a weighted voting mechanism, 

achieving 98% accuracy in breast cancer survival prediction [9]. Shen et al. applied decision-level 

fusion to CT imaging and clinical time-series data for lung cancer survival prediction, using CNN 

and Recurrent Neural Network (RNN) models with a weighted aggregation strategy. The approach 

yielded 96% accuracy and high F1 scores, demonstrating its robustness [10]. Despite these strengths, 

both studies acknowledge a lack of deep cross-modal interactions, limiting the approach in tasks 

requiring high inter-modality correlation. 
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3.3. Dataset-Level Fusion 

Dataset-level fusion processes multimodal raw data in an integrated manner to allow for end-to-end 

learning. Lee et al. demonstrated this method by fusing molecular imaging and genomic data, 

achieving a sensitivity of 92% and specificity of 89%. Their framework relied on deep neural 

networks to align and standardize raw inputs, though preprocessing complexity presented challenges 

[11]. Similarly, Rahman et al. developed a stacked autoencoder-based framework that integrated MRI 

and clinical data for breast cancer diagnosis. Their model achieved sensitivity and specificity rates of 

93% and 91%, respectively [12]. While these studies validate the potential of dataset-level fusion in 

cancer detection, both emphasize the critical need for robust preprocessing pipelines to address data 

misalignment and standardization issues. 

4. Current Limitations and Future Prospects 

The practical application of multimodal AI in the medical field still faces many challenges, 

particularly in the areas of data privacy, evaluation standard completeness, and explainability. 

4.1. Data Privacy 

Medical data typically contains sensitive information, such as patient histories, imaging, and genomic 

data, which requires special attention to patient privacy during data sharing and storage. In 

multimodal AI, where models extract information from various types of data (e.g., imaging, text, and 

genomic data), data integration increases the risk of privacy breaches. Several methods can protect 

patient data privacy [13]. 

Federated learning enables healthcare institutions to collaboratively train models without sharing 

actual data. By training models locally and only sharing parameter updates, data privacy is ensured. 

Federated learning has been applied in several medical AI projects, effectively mitigating privacy 

concerns. It focuses on solving the issue of non-shared data in multi-center collaborations, reducing 

the risk of privacy breaches through local training [14]. 

Differential privacy introduces random noise into the data to obscure personal information, 

preventing privacy leakage. When combined with federated learning or centralized training datasets, 

differential privacy can further reduce privacy risks. It focuses on protecting the privacy of sensitive 

data by masking personal information and enhancing the security of data sharing. 

Homomorphic encryption allows computation on encrypted data without the need for decryption. 

Although it incurs significant computational overhead, this encryption method provides strong data 

security for highly sensitive scenarios, ensuring that data is not intercepted or tampered with during 

transmission and processing. 

4.2. Evaluation Standards  

Evaluation standards for multimodal AI applications in healthcare are complex. While traditional 

metrics like accuracy, sensitivity, specificity, and the Dice coefficient assess model performance 

effectively, they are insufficient in evaluating the comprehensive performance of multimodal tasks. 

For example, existing evaluation standards are not adequate for evaluating cross-modal analytical 

abilities, adaptability to different modality data, and model generalization [15]. 

In addition to basic classification and segmentation metrics, dimensional assessments of feature 

contribution and modality consistency can be introduced. For example, by calculating the 

contribution of each modality's features to the final diagnosis, these evaluations examine whether the 

model effectively integrates multimodal data. This method aims to address the gaps in current 
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standards regarding multimodal data fusion and overall performance evaluation, focusing on the 

adaptability and contribution of each modality [16]. 

Testing model robustness and consistency on multi-center datasets ensures the model’s 

performance across diverse data environments. Establishing cross-institutional evaluation standards 

ensures stable diagnostic results across different devices, patient populations, and imaging conditions, 

solving generalization issues. This approach enhances the model’s applicability through validation 

across multiple data sources. 

4.3. Explainability 

Explainability is critical in medical AI, especially for high-risk tasks such as cancer detection, where 

clinicians need to understand the rationale behind model decisions. However, multimodal AI models 

often feature highly complex network structures, and the process of fusing features from different 

modalities makes it difficult to interpret model decisions. This "black-box" nature hinders clinician 

trust and can create uncertainties in clinical applications. 

Explanation tools such as SHAP and LIME calculate each feature's contribution to the model's 

predictions, generating visualizations that help clinicians understand the key features the model 

focuses on. For instance, SHAP can reveal which modality or feature plays a crucial role in cancer 

diagnosis, improving the model's transparency [17]. 

Grad-CAM is a heatmap method for neural networks that uses backpropagation to locate areas of 

an image that the model is focusing on, helping clinicians understand the basis of image analysis. 

This method can also be applied to multimodal imaging data to show areas of interest across different 

modalities [18]. 

By incorporating modality weight learning modules during training, the model can automatically 

learn and display the relative weight of each modality in its predictions. This method provides insights 

into the contribution of different modalities, helping clinicians understand the importance of each 

data type in decision-making. 

5. Conclusion 

Multimodal AI has the potential to significantly advance cancer diagnosis by integrating diverse data 

sources to improve diagnostic accuracy and speed. Methods such as feature-level fusion, decision-

level fusion, and dataset-level fusion each bring unique strengths to the table, offering flexible 

solutions to the challenges of data integration and analysis. Despite its promise, the application of 

multimodal AI in healthcare is not without challenges, particularly in data privacy, evaluation 

standards, and explainability. Addressing these issues through innovations in federated learning, 

differential privacy, and enhanced evaluation frameworks will be essential for the broader adoption 

of these technologies. Future advancements in AI explainability and privacy-preserving techniques 

will further enhance the trust and utility of multimodal AI in clinical settings. As these technologies 

continue to evolve, multimodal AI is poised to play a pivotal role in early cancer detection, 

personalized treatment, and ultimately improving patient outcomes across diverse healthcare 

environments. 
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