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Abstract: As an important application direction of urban computing, traffic flow prediction 

plays an important role in modern traffic management, urban planning and sustainable 

development. In recent years, many cutting-edge studies in the field of traffic flow prediction 

have had a significant impact and promoted the development of practical applications in this 

field. This paper mainly focuses on the research results of various traffic prediction directions. 

According to the actual environment and the functional characteristics of the research results, 

the research is classified into three aspects: data acquisition, feature engineering, and 

prediction model optimization. It also summarizes the optimization effects of research on 

traffic flow prediction in sensor data acquisition, data outlier processing, neural network 

prediction technology, etc. This paper first proposes three important aspects that affect traffic 

flow prediction and classifies recent research results. Then, the functions and impacts are 

analyzed from various aspects, and the advantages and progress of the research results are 

analyzed by comparing most mainstream methods. Then, the problems and limitations of the 

research are analyzed and discussed in combination with the actual road environment. Finally, 

the future research direction and development trend of this field are prospected, and the full 

text is summarized. 

Keywords: urban computing, traffic flow forecasting, predictive models, feature engineering, 

Data acquisition. 

1. Introduction 

The concept of urban computing was first proposed by Urban computing is an interdisciplinary 

subject and an emerging field in computer science that takes cities as the background and integrates 

urban planning, transportation, energy, environment, sociology, and economics [1]. The application 

of urban computing in the field of traffic flow prediction is a relatively mature and widespread 

direction at present. By optimizing the traffic flow prediction process, it helps to improve traffic 

management and urban planning development. This paper mainly focuses on the detailed 

classification, overview, and analysis of the research results of emerging technologies in the field of 

traffic flow prediction in recent years, reflecting the technological advancement and cutting-edge 

nature of its research. Finally, combined with practical factors, the shortcomings and possible 

solutions of traffic flow prediction are discussed. 
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The current traffic flow prediction process can be divided into the following key steps. The first is 

data collection. At present, data related to traffic flow can be collected through sensors, cameras, GPS 

devices, etc. The second is feature engineering, which includes data preprocessing, temporal feature 

extraction, spatial feature extraction, historical traffic feature selection, feature construction, and 

multi-source data fusion. Then the prediction model is selected and trained. After the prediction is 

completed, the model is evaluated based on the results. Finally, the prediction results are continuously 

monitored and fed back. This paper reviews three important aspects that affect traffic flow prediction, 

namely data collection, feature engineering, and prediction models, based on the main clustering 

direction of prediction errors and technical optimization directions in actual road environments. This 

paper classifies various research results in recent years and summarizes and analyzes their specific 

functions and impacts. In terms of data collection, a variety of optimization methods have been 

proposed to address the problems of incomplete data and incomplete data collection in data sources 

such as sensors, cameras, and GPS, such as dynamic sparse training DynST [2]. In terms of feature 

engineering, recent research has achieved significant optimization effects on major issues such as 

data outlier processing, data missing value processing, and feature extraction. For example, the 

prediction-based anomaly detection framework GST-Pro [3]. In terms of prediction models, new 

methods such as deep learning based on neural networks have achieved optimization of prediction 

models by combining self-supervision mechanisms, attention mechanisms, and the complexity of the 

spatiotemporal distribution of data. For example, a deep learning model based on spatiotemporal 

learning with multi-scale feature enhancement [4]. Compared with traditional mainstream prediction 

models, the new models have significantly improved in terms of prediction accuracy and model 

generalization ability. 

Sections 2, 3, and 4 of this paper will analyze and introduce the latest research results and research 

status in detail from the above three main aspects. Section 5 analyzes some of the problems that still 

exist in the field of traffic flow prediction in combination with realistic factors, points out the 

problems that may be faced, proposes possible solutions, and looks forward to the future development 

prospects of this field. Section 6 summarizes the article.  

2. Technical optimization of data collection direction 

The main data sources in traffic flow prediction at present are sensor data, GPS data, traffic 

management systems, etc. With the popularization of monitoring equipment and the advancement of 

technology, the data sources of road information have become more extensive and the data integrity 

has also been improved. However, the quality of data obtained at this stage often cannot meet the 

high-precision and real-time traffic flow prediction effect. It faces problems such as inaccurate 

collected data due to failures or false alarms of sensors and monitoring equipment; incomplete data 

due to lack of sufficient monitoring equipment in some areas; poor real-time prediction and difficulty 

in integrating different types of data. 

Limited by the actual environment and hardware technology factors, how to enhance the reliability 

and data quality of data sources under existing equipment and economic conditions has become a key. 

At present, most fine-grained flows are based on the observation of coarse-grained flows, but 

mainstream methods generally believe that some coarse-grained flows are unobservable, resulting in 

data loss. The UrbanSTA method was proposed based on this problem [5]. It uses spatiotemporal 

attraction learning to infer fine-grained urban traffic flow so that high-precision prediction can be 

achieved even when some data is unobservable. UrbanSTA includes two network models: one is the 

STA module with an asymmetric encoder-decoder architecture, which predicts missing values by 

extracting spatial and temporal features of urban traffic. The other is a fine-grained decoder with 

spatial attention, which infers fine-grained features from the predicted coarse-grained features and 

uses upsampling operations to restore high-resolution feature maps consistent with the original data 
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structure. The final function of UrbanSTA is achieved by combining the functions of the two network 

models. The research team used the Beijing taxi dataset for experimental comparison. UrbanSTA was 

compared with six baseline methods. The results also proved that UrbanSTA performed best in 

datasets with different missing degrees. This reflects the advancement of the method. 

At the same time, the concept of dynamic sparse training DynST has also been proposed in recent 

years. Traditional sensor deployment methods often use specific algorithms to design and deploy 

sensors. For example, random deployment and dynamic deployment [6, 7]. However, the activation 

strategy is formulated based on historical observations and geographical features, making the method 

and the resulting model impractical. DynST optimizes resource-constrained spatiotemporal 

prediction models by adaptively screening sensor deployment, which can both improve the model 

inference speed and maintain prediction performance. DynST can effectively solve the pruning 

problem on spatiotemporal data. It uses dynamic training technology to gradually identify and prune 

sensor areas that contribute the least to future predictions during training so that the model can adapt 

to changes in time series data; at the same time, through streaming deformation operators, it handles 

the interference of time dimensions in time series data and effectively converts spatiotemporal data 

into a format suitable for model processing, thereby reducing conflicts in the pruning process. DynST 

adopts an iterative pruning strategy and re-evaluates the importance of the remaining areas after each 

pruning. It ensures that each pruning can maximize the retention of areas that are important to model 

performance and uses explicit channel stacking to build overlapping saliency maps, which can help 

evaluate the importance of each sensor in historical data, to perform pruning more accurately. 

3. Technical optimization of feature engineering 

In traffic flow prediction, feature engineering focuses on data preprocessing, feature extraction, 

feature construction, and recognition of the collected data. In the past two years, a variety of feature 

engineering optimization technologies have been proposed in this field, including the framework 

SAInf that uses surveillance camera data to identify vehicle stop areas [8]; the new prediction-based 

anomaly detection framework GST-Pro [9]; the new automatic neural network architecture search 

framework AutoSTG+[10]; and the new trajectory representation learning framework JGRM that 

combines GPS and route modeling [11]. 

SAInf consists of two main components: stop event detection and stop area recognition. 

Traditional stop area detection methods rely on high-frequency GPS data, but due to privacy issues 

and data acquisition limitations, these data are often difficult to obtain in practical applications. SAInf 

uses data recorded by surveillance cameras to design a three-stage method to detect stop events and 

identify stop areas, thereby overcoming the uncertainty caused by sparse trajectories, making 

trajectory mining more accurate and comprehensive, and improving the reliability and quality of data 

sources for prediction models. The first stage of the three-stage method is data preparation, which 

uses GPS trajectory data to construct ground truth by performing trajectory noise filtering and stop 

area detection algorithms [12]. Then, the SCR pairs are matched with stop events in chronological 

order; the second stage is stop event detection, which determines whether a stop event occurs by 

analyzing the driving speed between surveillance camera records and uses data aggregation methods 

to build a unified detection model to improve the detection effect of stop events; the third stage is 

stop area identification, which uses the spatial distribution characteristics of vehicles in surveillance 

records to generate potential stop areas. Then, by establishing a deep learning model, the candidate 

areas are evaluated, the stop probability of each area is calculated, and the most likely stop area is 

selected. 

GST-Pro is used to detect abnormal events in irregular multivariate time series with missing values. 

This method combines a graph neural network model based on neural controlled differential equations 

and a distribution-based anomaly scorer to achieve efficient and accurate real-time anomaly detection 
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without the need for current timestamp observations. Its optimization effect in feature engineering is 

reflected in its ability to efficiently handle missing traffic data caused by sensor failures, network 

problems, etc., and improve data quality. At the same time, GST-Pro can detect abnormal situations 

in traffic flow in real-time. The dynamic characteristics of traffic flow over time and space are 

captured through dynamic graph neural control differential equations. 

The AutoSTG+ framework uses spatial graph convolution and temporal convolution operations to 

capture complex spatiotemporal correlations and uses meta-learning techniques to learn the adjacency 

matrix of the spatial graph convolution layer and the kernel of the temporal convolution layer from 

the meta-graph. Through extensive experiments on seven real datasets, AutoSTG+ can automatically 

find effective neural network architectures and achieve excellent prediction accuracy in traffic, air 

quality, and water quality prediction tasks. The framework can better capture data features and find 

suitable neural networks for different prediction types, improving accuracy and efficiency. 

The JGRM framework uses the complementary advantages of GPS trajectories and route 

trajectories to jointly learn the representation of road sections and trajectories, which can better 

capture the interactive information between mobile objects and geographic space, and train the model 

through self-supervised learning. Better accurate trajectory data mining. JGRM can significantly 

enhance the trajectory representation capability in traffic flow prediction. It generates a richer and 

more accurate trajectory representation by jointly modeling GPS trajectories and route trajectories. 

This representation not only captures the details of vehicle movement but also combines the structural 

characteristics of the road, improving the understanding of traffic flow dynamics; at the same time, it 

has the effectiveness of self-supervised learning and can be trained on a large amount of unlabeled 

data, thereby reducing the dependence on labeled data. It enables it to maintain good prediction 

performance in different traffic scenarios. Multimodal information fusion is also one of the 

characteristics of JGRM. By fusing different types of trajectory information and comprehensively 

considering multiple influencing factors (such as traffic signals, road conditions, weather, etc.), the 

feature accuracy of the data is enhanced. 

4. Optimization of prediction model direction 

The prediction model is the core part of traffic flow prediction. For traffic flow prediction, its data 

has the characteristics of uneven temporal and spatial distribution, strong timeliness, complex data 

types, and high correlation. Using a single neural network often cannot obtain good and efficient 

prediction results. In response to this existing problem, multiple optimization models have been 

proposed in recent years. Including deep learning models based on spatiotemporal learning with 

multi-scale feature enhancement [4], MMSTNet model [13], dual-track spatiotemporal learning 

framework [14], and NuwaDynamics framework [15].  

A deep learning model based on spatiotemporal learning with multi-scale feature enhancement is 

used for traffic flow prediction. The model consists of three core modules: spatiotemporal 

dependency feature enhancement module, traffic network topology feature enhancement module, and 

spatiotemporal attention learning module. The spatiotemporal dependency feature enhancement 

module selectively retains important historical spatiotemporal dependency features through a 

memory enhancement mechanism to provide contextual information for future predictions. The 

traffic network topology feature enhancement module introduces a learnable matrix to capture the 

complex spatial dependencies between nodes. The spatiotemporal attention learning module 

effectively integrates spatiotemporal information and realizes effective modeling of complex traffic 

flow data. 

The complex spatial correlations handled by most advanced traffic prediction methods can be 

regarded as micro-correlations. However, there are also macro-correlations between regions, each of 

which is composed of multiple road segments or artificially partitioned areas. Macro-correlations 
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represent another type of interaction within a road segment and should be carefully considered when 

predicting traffic. A macro-micro spatiotemporal neural network model MMSTNet was developed 

for this purpose. MMSTNet creates an input layer for receiving traffic data, which includes time series 

and spatial information. Then, graph convolutional networks and spatial attention networks are used 

to capture micro and macro spatial correlations respectively; temporal convolutional networks and 

temporal attention networks are used to learn temporal patterns; finally, hierarchical learning 

representations are integrated based on the designed attention mechanism to achieve good prediction 

results. 

The dual-track spatiotemporal learning framework focuses on time series data and spatial 

distribution data. Through dual-track learning, the model can more comprehensively understand the 

changing laws of urban traffic. The implementation of this framework uses the time track to process 

time series data using recurrent neural networks (RNN) or long short-term memory networks (LSTM) 

to capture temporal dependencies. At the same time, the spatial track is used: convolutional neural 

networks (CNN) are used to process spatial distribution data to capture spatial correlations. Finally, 

the information on the time and space tracks is combined through a fusion mechanism to generate the 

final prediction results. Adaptive normalization is performed. 

The proposal of the NuwaDynamics framework solves the problems of data sparsity and lack of 

interpretability faced by spatiotemporal prediction models. The framework implements causal 

reasoning and data amplification through two-step processing. The first is the discovery phase, in 

which the model uses self-supervised learning methods to identify causally important regions in the 

data. This is achieved by analyzing the characteristics and patterns of the data, helping the model 

understand which regions have a greater impact on the prediction results. At the same time, through 

the analysis of important patches, it acquires broader knowledge and conducts targeted interventions 

on unimportant patches to infer the potential test distribution; the second is the update phase, in which 

the model applies the knowledge gained through the discovery phase to specific spatiotemporal 

prediction tasks to improve its causal perception ability. Subsequently, through the understanding of 

causal relationships, the model can make predictions more effectively, thereby performing better in 

various spatiotemporal tasks. 

5. Current limitations and prospects 

5.1. Existing limitations 

For most traditional traffic flow prediction methods, when faced with problems such as low data 

quality and availability, complex and dynamic traffic patterns, and large differences in traffic flow 

characteristics across regions and periods, there are large errors and accurate predictions are often not 

possible. 

In recent years, research in this field has optimized the important steps that affect traffic flow by 

introducing currently popular theories and learning mechanisms and improving the prediction level. 

However, there are still certain limitations in the complex conditions of real roads. 

In terms of data collection, the number of sensors and cameras deployed and the detection accuracy 

of the equipment itself largely determine the reliability of the data source. Although the UrbanSTA 

method can infer fine-grained flow data based on coarse-grained flow data, its prediction ability is 

still greatly affected by data missingness. The team only showed a maximum of 60% missing cases, 

did not continue to explore the inference effect of more missing cases, and failed to take into account 

the lack of sensors and GPS signals in remote areas. At the same time, the team did not propose 

countermeasures for abnormal trajectory data caused by sudden traffic conditions. A large number of 

sudden abnormal values will cause errors in the attraction of points of interest. To make the model 

more stable, different data sets with larger missing ranges and outliers near the points of interest can 
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be used for experimental training, and the problems in the experiment can be re-analyzed and studied. 

For DynST, its function can determine the importance of the data in the deployment area, delete the 

data in unnecessary areas, and thus improve the overall efficiency allocation. However, for the 

problem of poor overall data set quality and sensor malfunction in some important areas, it cannot 

optimize the data as a whole and can only achieve the optimal level under the existing conditions. 

In terms of feature engineering. SAInf relies too much on the accuracy and comprehensiveness of 

the point of interest data in the identification of the stay area. If the point of interest data is incomplete, 

it may affect the final recognition result. At the same time, the acquisition of camera data often 

involves some privacy issues. In reality, this limitation will lead to the loss of data at key locations 

and a decrease in accuracy. During the traffic construction stage, the road conditions change 

frequently, and the model may need to be updated regularly to adapt to the new data mode. The same 

problem exists with JGRM. Although JGRM performs well in transfer learning between different 

cities, differences in traffic patterns and driving habits in different cities or regions may affect the 

applicability of the model. To optimize this problem, a personalized module can be added to conduct 

associated learning of different traffic feature sections and driver habits, considering the impact of 

these factors on trajectory data mining; at the same time, the training and optimization of the model 

are mainly based on historical data, which may not be able to quickly adapt to real-time changing 

traffic conditions. The calculation speed of the model needs to be improved to enhance the real-time 

performance of its trajectory representation. 

In terms of prediction models, the deep learning model based on spatiotemporal learning with 

multi-scale feature enhancement uses multi-scale convolution and combines LSTM and GCN for 

spatiotemporal modeling, which increases the computational complexity of the model. The 

enhancement of multiple features may cause certain delays in the prediction process. Ensuring the 

prediction effect, simplifying the calculation steps, and improving the overall model's operational 

efficiency are some improvement directions of this method. Both MMSTNet and the dual-track 

spatiotemporal learning framework include data fusion processes. Multiple data sources may contain 

duplicate information or contradictory data. Further efficient processing of these redundancies and 

conflicts can help optimize model functions. 

There are some common problems in research in various aspects. For example, the model is too 

complex, resulting in long calculation time and the real-time performance cannot be guaranteed. The 

learning and feature extraction process needs to be simplified. The basic data acquisition facilities 

(sensors, cameras, GPS signals) are deployed unevenly or at low density, which interferes with the 

stability of data collection optimization. The evaluation indicators of the optimization model 

verification experiment (MSE, MAE, MAPE) have certain shortcomings and cannot evaluate the 

model performance more comprehensively. Better evaluation criteria need to be proposed. Most deep 

learning models lack interpretability, which may cause trust issues. 

5.2. Future Outlook 

The future development direction of traffic flow prediction can focus on advanced data analysis 

technology. With the development of big data and machine learning technology, traffic flow 

prediction will be more accurate. Combining prediction models with different training methods and 

theories can better handle complex traffic data. At the same time, the direction of real-time data 

integration is also worthy of attention. In the future, through the Internet of Things (IoT) technology, 

real-time information from traffic sensors, cameras, and GPS data will be obtained in real-time, and 

the timeliness and accuracy of the prediction data source will be improved at a higher level. Finally, 

multi-source data fusion will also be one of the development directions in this field. A more accurate 

combination of data from different sources (such as social media, weather data, historical traffic data, 
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etc.) will enhance the ability of prediction models and provide more comprehensive traffic flow 

analysis. 

6. Conclusion 

By providing real-time and future traffic flow data, traffic flow prediction technology not only helps 

daily traffic management and decision-making, but also has a profound impact on improving traffic 

safety, reducing environmental pollution, and supporting intelligent transportation systems. It is an 

indispensable part to realize the intelligent development of cities in the future. The latest research 

results in this field have greatly optimized the traffic flow prediction effect from three aspects: data 

collection, feature engineering, and prediction models. This article provides an overview and analysis 

of various technical studies that have significant improvement effects and demonstrates the cutting-

edge technology level and progress in this field through comparative analysis of experimental data 

sets. At the same time, it demonstrates the huge development potential in this field. The latter part of 

the article discusses the functional limitations of each latest research result by combining the current 

technical level and external conditions and analyzes and points out potential problems in this field. It 

provides valuable ideas and directions for subsequent research. 
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