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Abstract: This paper explores the application of deep learning techniques in the fusion of 

high dynamic range (HDR) images, emphasizing its transformative impact on traditional 

HDR imaging methods. HDR images are renowned for capturing a broader range of 

luminosity; however, traditional methods face challenges such as camera shake and ghosting 

in dynamic scenes. The introduction of deep learning has automated and enhanced the HDR 

image generation process, particularly in image fusion, deblurring, and artifact correction. 

This paper reviews relevant deep learning algorithms and architectures, analyzes the strengths 

and limitations of current HDR imaging approaches, and suggests future research directions 

aimed at improving efficiency, accuracy, and applicability across various domains.  
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1. Introduction 

High dynamic range (HDR) images are renowned for their ability to capture a broader range of 

luminosity, providing viewers with a richer and more immersive visual experience [1]. Consequently, 

achieving high-quality HDR images has become a focal point in the photographic industry. 

Traditionally, photographers captured multiple frames of the same scene with varying exposures 

to preserve details in both the darkest and brightest areas. Typically, three photos are taken—one with 

low exposure, one with standard exposure, and one with high exposure—and then merged into an 

HDR image using professional image editing software. However, this process is not without 

challenges. Photographers must address issues like camera shake or moving objects, which can cause 

ghosting artifacts in the final image. Additionally, HDR images often exceed the display capabilities 

of standard monitors, requiring manual tone mapping to produce a visually appealing result [2-4]. 

These complex post-production steps demand a high level of skill and experience, making the process 

daunting for beginners. 

The advent of deep learning has revolutionized HDR image production, fundamentally 

transforming the way these images are created and refined. Researchers are increasingly utilizing 

deep learning techniques to automate and enhance various stages of the HDR imaging workflow, 

including exposure fusion, deblurring, and the correction of common artifacts such as ghosting. By 

training models on suitable image datasets, deep learning algorithms can predict optimal exposure 

settings, and seamlessly fuse multiple images with varying exposures [5-14]. These advancements 

are democratizing HDR imaging, making it more accessible not only to professional photographers 
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but also to enthusiasts and casual users who may lack the technical expertise required for traditional 

HDR methods. With continuous progress in this field, HDR image production is no longer reliant 

solely on manual editing. Instead, it benefits from the powerful computational capabilities of modern 

computers, streamlining the process and allowing for the creation of high-quality HDR images with 

greater ease. 

This paper examines recent advancements in HDR image fusion methods driven by deep learning, 

highlighting key algorithms, architectures, and their contributions to the field. It also provides a 

critical analysis of the current state of deep learning in HDR imaging, identifying both the strengths 

and limitations of existing approaches. Finally, the paper offers recommendations for future research 

directions, with a focus on enhancing the efficiency, accuracy, and applicability of deep learning 

techniques in HDR image production across various domains. 

2. Introduction to deep learning for HDR imaging 

2.1. Traditional Techniques for Creating HDR Images 

Exposure bracketing is a widely used technique that allows photographers to capture multiple frames 

of the same scene. This approach addresses the limitations of capturing the full dynamic range of a 

scene in a single frame, a challenge that the HDR fusion process is designed to overcome. To tackle 

these issues, Debevec & Malik (1997) and Drago et al. (2003) utilized this method to produce HDR 

images [15, 16]. 

However, HDR images often exceed the capabilities of standard display screens, requiring an 

additional processing step known as tone mapping to be properly displayed [17]. Traditional HDR 

generation methods typically rely on fixed algorithms or offer only a limited set of manually 

adjustable parameters, like [15]. These constraints can make it difficult to achieve optimal results, 

particularly in complex scenarios where a one-size-fits-all approach may not suffice. The lack of 

flexibility in traditional techniques can hinder the creation of customized, high-quality HDR images 

in more demanding situations. 

2.2. Advantages of Deep Learning in HDR Imaging 

The advent of deep learning, particularly the introduction of Convolutional Neural Networks (CNNs), 

has significantly advanced the field of high dynamic range (HDR) imaging. Kalantari and 

Ramamoorthi  [5] were among the first to demonstrate the potential of CNNs for HDR image 

generation, especially in addressing the notorious issue of ghosting in dynamic scenes. Ghosting 

artifacts arise when there is motion between the different exposure frames, causing misalignment and 

blending issues in traditional HDR techniques. By leveraging CNNs, Kalantari and Ramamoorthi 

were able to develop a method that could intelligently predict and correct these misalignments, 

effectively eliminating ghosting and enabling HDR image generation even in complex, motion-filled 

scenes. This innovation was a major breakthrough in the field, allowing for more robust and reliable 

HDR processing under dynamic conditions. 

Many subsequent studies [6-14, 23-25, 27-33] have built upon this foundational work [5]. In 

addition to benefiting from these advancements, more recent research has focused on reducing the 

artifacts that were prevalent in earlier methods. A key challenge in this regard is the misalignment of 

input photos. Optical flow has emerged as a popular technique for aligning images, with its conceptual 

foundations dating back to 1981 [18]. By the time of [19], a more mature optical flow algorithm had 

become practical for multi-frame HDR image generation. 
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3. Deep Learning Techniques for Combining Multiple Exposures 

3.1. Neural Network Architectures for HDR Imaging 

As the first work to use CNNs for HDR image generation [5], this approach marked a significant 

boost for the HDR imaging industry. CNNs allow networks to extract more abstract features from 

images, enabling more customized frame fusion, which helped researchers handle dynamic scenes 

more effectively. With the rise of GANs [20], many fields, including HDR imaging, began to adopt 

this novel framework. As a pioneer, [12] introduced adversarial networks to HDR imaging, allowing 

models to better reconstruct missing information in overexposed or underexposed areas and a well-

designed generator largely mitigated misalignment issues during the fusion process. 

Since its debut, the Transformer architecture [21] has been a standout in the deep learning field, 

and in 2020, it was successfully applied to computer vision [22]. Two years later, [23] developed a 

transformer-based model specifically for HDR image generation. This approach allows the model to 

learn both local and global image features, overcoming many of the challenges that previous methods 

encountered. 

3.2. Training Deep Learning Models for HDR 

To train an effective HDR-generating algorithm, a high-quality dataset is essential. [5] was the first 

to introduce a real-world dataset consisting of three LDR images and one HDR ground truth label for 

the HDR deghosting task. Expanding on this, [24] developed a larger multi-frame fusion HDR dataset 

using a similar approach to that of Kalantari et al. (2017) [5]. [25] sourced HDR images from [26] 

which featured challenging scenes for HDR video and synthesized corresponding LDR images which 

ensured the central medium frame aligned with the HDR ground truth. [27] introduced a dataset with 

more diverse subjects, complex environmental conditions, and larger motion variations. 

Depending on the specific requirements of HDR imaging, different loss functions may be needed. 

For simpler scenarios, mean square error (MSE) can be sufficient to produce pleasing results. In more 

complex cases, L2 loss might be used as a stronger constraint. However, a more common approach 

is to design a custom combined loss function to balance various constraints in a given situation, often 

resulting in high-quality outputs. 

4. Qualitative and Quantitative Evaluation 

4.1. Qualitative Evaluation 

 

Figure 1: Visual representation of validation results for representative HDR imaging methods. 
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The bottom row in Figure 1 illustrates the progressive evolution of HDR imaging techniques. The 

first three methods—DeepHDR [34], AHDRNet [7], and CA-VIT [23]—represent significant 

milestones in HDR imaging research, while the final method, SelfHDR [28], showcases an impressive 

outcome achieved through self-supervised learning. 

From these images, the advancements in the field become evident, particularly in minimizing 

ghosting artifacts and achieving visually realistic results. However, due to inherent limitations of real-

world scenarios—such as overexposed areas, occluded objects, and other visual interferences—the 

true appearance of the scene cannot always be fully reconstructed. This limitation arises because even 

human observers cannot determine what lies behind these obstructions, reflecting the complexity of 

HDR imaging. 

4.2. Quantitative Evaluation 

Table 1 summarizes the quantitative evaluation results of several prominent HDR imaging methods. 

Performance metrics include PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity 

Index), computed in both tone-mapped (PSNR-µ, SSIM-µ) and linear (PSNR-l, SSIM-l) domains, 

compared to the ground truth. Additionally, HDR-DVP-2, a widely used metric for assessing human 

visual quality, is presented. 

Table 1: Quantitative performance metrics for representative HDR imaging methods. 

Method PSNR-µ SSIM-µ PSNR-l SSIM-l HDR-DVP-2 

DeepHDR 41.65 0.9860 40.88 0.9858 64.90 

AHDRNet 43.63 0.9900 41.14 0.9702 64.61 

CA-VIT 44.21 0.9918 42.17 0.9889 64.63 

SelfHDR 43.95 0.9907 41.77 0.9889 64.77 

5. Challenges and Future Directions 

5.1. Practical Considerations 

As HDR imaging has evolved, numerous methods have emerged to achieve high-quality results, some 

even claiming to be ghosting-free [7, 13, 29, 30]. Additionally, innovative learning strategies, such 

as self-supervised and few-shot learning [28, 31, 32], are gaining traction. However, there remains a 

critical need to enhance inference times, particularly for mobile devices. This paper suggests that 

finding a balance between speed and quality could be a promising direction for future research. 

Moreover, recent advancements have introduced more complex architectures into low-level vision, 

paving the way for novel approaches. For instance, generative models like GANs and diffusion 

models have been successfully integrated into the HDR imaging process [12, 34]. These models excel 

in generating semantically coherent details by leveraging contextual information, and they allow for 

the incorporation of additional constraints to guide pixel generation. 

5.2. Expanding HDR Imaging Beyond Photography 

The demand for higher specifications in film and television is on the rise. Audiences increasingly 

seek immersive experiences that go beyond engaging storylines to include realistic visual elements. 

Fortunately, the HDR format is well-suited to deliver this enhanced visual enjoyment. The HDR 

imaging industry can capitalize on the rapid development of hardware, particularly for consumer-

facing devices, and explore opportunities to integrate HDR formats with virtual reality (VR) and 

augmented reality (AR), which are gaining popularity in the context of Web 3.0. 
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6. Conclusion 

In summary, this paper offers a comprehensive review of advancements in HDR imaging driven by 

deep learning techniques, highlighting the transformative impact of neural network architectures on 

the fusion of multiple exposure images. The evolution from traditional methods to contemporary deep 

learning approaches illustrates a significant leap in the quality and accessibility of HDR imaging, 

enabling both professionals and enthusiasts to produce stunning visuals with greater ease. 

Furthermore, the exploration of novel architectures, such as GANs and transformers, showcases their 

potential to address persistent challenges, including ghosting and alignment issues. Looking ahead, 

the integration of HDR imaging with emerging technologies such as virtual and augmented reality 

presents exciting opportunities for enhanced visual experiences across various domains, including 

film, gaming, and immersive storytelling. As the demand for high-quality visual content continues to 

rise, ongoing research aimed at improving efficiency, speed, and the applicability of these techniques 

will be crucial in shaping the future of HDR imaging. Ultimately, the fusion of deep learning and 

HDR imaging not only promises to elevate visual standards but also democratizes the art of 

photography, inviting a broader audience to engage with and appreciate the beauty of high dynamic 

range images. 
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