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Abstract: With the intensification of global climate change and energy crises, wind energy, 

as a clean and renewable energy source, has gradually become a crucial component in the 

energy sector. However, the intermittent and unstable nature of wind power generation 

poses significant challenges to accurately predicting the power output of wind turbines. This 

study proposes a wind power prediction model combining Long Short-Term Memory 

(LSTM) networks and Self-Attention mechanisms. LSTM net- works effectively capture 

long-term dependencies in time series through their gat- ing mechanisms, while the Self-

Attention mechanism dynamically adjusts attention to critical time steps, further enhancing 

prediction accuracy. Experimental validation on real-world wind power datasets 

demonstrates that the LSTM + Attention model outperforms traditional RNN and LSTM 

models in terms of training loss, validation loss, and prediction accuracy, particularly in 

reducing prediction errors and improving accuracy. The results indicate that the LSTM 

model integrated with Self-Attention ef- fectively addresses complex nonlinear features in 

wind power prediction, enhancing both generalization capability and prediction precision. 

This model provides an ef- fective solution for wind power prediction and holds significant 

application value for optimizing grid dispatch and management, as well as improving the 

competitiveness of wind energy in the energy market. 

Keywords: wind power generation, power prediction, long short-term memory (lstm), self-

attention mechanism, deep learning 

1. Introduction 

The challenges of global climate change and energy crises have driven the growing demand for 

renewable energy. Among various renewable energy sources, wind energy has garnered significant 

attention due to its clean and sustainable characteristics. The reliability and stability of wind power 

generation largely depend on accurate power prediction capabilities. For grid operators, precise pre- 

diction of wind turbine output not only optimizes grid dispatch and management but also enhances 

the competitiveness of wind energy in the energy market. However, achieving high-precision power 

prediction remains a formidable challenge due to the intermittent and unstable nature of wind 

energy. In recent years, time series prediction techniques have demonstrated broad potential across 

various applications, such as financial market forecasting, weather prediction, and resource 

allocation. In the field of time series prediction, traditional models include Autoregressive (AR), 
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Autoregressive Moving Average (ARMA), and Autoregressive Integrated Moving Average 

(ARIMA).[1] However, these methods rely on linear assumptions and struggle to capture complex 

nonlinear features in time series data, limiting their practical applicability. To overcome these 

limitations, deep learning models have been introduced to time series prediction,[2] leveraging their 

powerful nonlinear mapping capabilities to more effectively identify implicit patterns and features 

in data.[3][4] 

Wind power prediction methods have been extensively studied in recent years, leading to various 

approaches, including physical methods, statistical methods, and hybrid methods[5][6]. In wind 

power prediction, physical methods rely on Numerical Weather Prediction (NWP) data, combined 

with terrain characteristics and aerodynamic parameters, to estimate wind speed and calculate 

power output using wind turbine power curves[6]. For example, Focken et al. developed a physics-

based wind power prediction method capable of forecasting wind power output up to 48 hours 

ahead[7]. How- ever, the high computational complexity of physical methods requires substantial 

resources, limiting their real-time application. 

On the other hand, statistical methods analyze the relationship between historical wind speed and 

power data, with common approaches including time series analysis (e.g., ARIMA) and Artificial 

Neural Networks (ANN)[5]. For instance, the Wind Power Prediction Tool (WPPT) model, based 

on a nonlinear statistical model, provides short-term forecasts up to 36 hours[5]. Additionally, Firat 

et al. proposed a statistical method combining Independent Component Analysis (ICA) with 

Autoregressive (AR) models, achieving high accuracy in short-term predictions[8]. 

Hybrid methods combine the strengths of physical and statistical approaches to capture wind 

speed variations while improving prediction accuracy. For example, the Previento model integrates 

physical and statistical methods to deliver wind power forecasts up to 48 hours ahead[5]. Lin et al. 

employed a hybrid approach combining deep learning with Isolation Forest to detect data anomalies 

and enhance prediction accuracy, demonstrating the significant potential of hybrid methods in 

improving predictive capabilities[9]. 

In recent years, the emergence of deep learning techniques has highlighted the effectiveness of 

models such as Long Short-Term Memory (LSTM) networks in wind power prediction[10]. Zhang 

et al. utilized LSTM combined with a Gaussian Mixture Model (GMM) to achieve high accuracy in 

forecasting for a wind farm in northern China[11]. Furthermore, the ANEMOS project[5] integrates 

multiple prediction methods to provide wind power forecasts ranging from short-term to long-term, 

showcasing the feasibility of combining deep learning with traditional approaches. 

In summary, this study proposes a model that integrates Self-Attention mechanisms with LSTM 

to fully leverage critical information in time series data, enabling more accurate prediction of wind 

turbine power output and providing feasible dispatch strategies and decision support. 

2. Theoretical Foundations 

2.1. Long Short-Term Memory Networks (LSTM) 

Long Short-Term Memory (LSTM) networks are an enhanced variant of Recurrent Neural Net- 

works (RNNs), designed to address the challenge of learning long-term dependencies in traditional 

RNNs.[12][13] LSTM introduces memory cells and three gating mechanisms (input gate, forget 

gate, and output gate) to control information flow and storage, thereby effectively capturing both 

short- and long-term features in time series.[14] Traditional RNNs suffer from severe gradient 

vanishing issues in long-term dependency problems[15], whereas the gating mechanisms effectively 

mitigate gradient vanishing during sequence processing.[16] 

Specifically, the memory cell serves as the main pathway for information transmission, retaining 

relevant information over extended periods. The input gate determines the extent to which current 
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input influences the memory cell, while the forget gate controls the degree of ”forgetting” past 

information.[17] The output gate regulates the contribution of the memory cell’s current state to the 

output layer. This design allows LSTM to flexibly handle dependencies in time series without 

losing critical contextual information.[18] Through these gating structures, LSTM overcomes 

gradient vanishing or explosion issues, making it suitable for capturing complex nonlinear 

relationships across time steps in sequences. 

Mathematically, for an input 𝑥𝑡 at time step 𝑡 and the previous hidden state ℎ𝑡−1, the LSTM state 

update process is as follows: 

• Input gate: Determines the influence of the current input on the memory cell. 

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

• Forget gate: Controls the update degree of the memory cell.[17] 

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

• Candidate memory cell state: Generates a candidate state through the current input. 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

• Memory cell state update: Integrates the effects of the forget gate and input gate. 

𝐶𝑡 = 𝑓𝑡 · 𝐶𝑡−1 + 𝑖𝑡 · �̃�𝑡 

• Output gate: Controls the output of the current hidden state. 

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 · 𝑡𝑎𝑛ℎ(𝐶𝑡) 

Here, 𝜎 denotes the Sigmoid activation function, and W and b are model parameters. Through 

the memory cell state 𝐶𝑡  and hidden state ℎ𝑡 , LSTM enables information to be retained or 

transmitted over extended periods within the network. 

The gating mechanisms and state update process (illustrated in Figure 1) allow LSTM to 

effectively address long-term dependency issues and provide dynamic memory capabilities for time 

series prediction. 

 

Figure 1: LSTM Cell Computational Flowchart 

2.2. Self-Attention Mechanism 

The Self-Attention mechanism is a structure designed to enhance a model’s focus by dynamically 

adjusting attention to different positions in an input sequence. Unlike traditional sequence models, 

the Attention mechanism is not constrained by sequential order but calculates relevance based on 

matches between queries (𝑄), keys (𝐾), and values (𝑉) to identify the importance of each part of the 

sequence for the current task.[19] 
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In the Attention mechanism, each element of the input sequence generates query, key, and value 

vectors. Attention weights are computed via the dot product of queries and keys, followed by 

Softmax normalization.[20] The specific computation is as follows: 

• Attention weight calculation: Compute attention weights for each input pair using queries 𝑄 

and keys 𝐾. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

Here, 𝑑𝑘 represents the dimensionality of the key vectors, used to scale the dot product results to 

prevent gradient vanishing. 

• Weighted summation: The weights multiplied by the value vectors 𝑉 yield the Attention out- 

put, enabling the model to focus on critical information in the input sequence. 

The core of the Attention mechanism lies in its ability to provide flexible contextual focus, 

allowing the network to dynamically adjust attention to different parts of the input sequence.[21] 

When combined with LSTM, the Attention mechanism adds selective focus to LSTM’s hidden 

states, enabling LSTM to concentrate on the most critical historical information at the current time 

step, thereby mitigating its limitations in capturing long-term dependencies.[22] 

3. Theoretical Framework of the LSTM-A Model 

Combining Long Short-Term Memory (LSTM) with the Self-Attention mechanism leverages the 

strengths of both approaches: LSTM captures long- and short-term dependencies in time series, 

while Self-Attention dynamically focuses on critical information in the sequence. The integrated 

framework consists of the following two main components. 

3.1. Feature Extraction Layer (LSTM Layer) 

The primary role of the LSTM layer in this model is to extract temporal features from wind power 

time series data and provide rich contextual information for subsequent Self-Attention processing. 

Al- though LSTM inherently captures temporal dependencies through its gating mechanisms, the 

complex influences of multiple factors on wind power variations mean that LSTM’s hidden state 

sequences alone may not fully capture all critical temporal features. Therefore, integrating LSTM 

with Self- Attention forms a powerful feature extraction and weighted focusing module to further 

improve pre- diction accuracy. 

During the feature extraction phase, the LSTM layer processes the input time series data and 

generates hidden state sequences 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑇} at each time step through its memory cells 

and gating mechanisms. These hidden states represent ”abstracted patterns” of wind power 

variations over time. However, since wind power at different time steps may be influenced by 

external factors (e.g., weather changes, sudden wind speed fluctuations), certain time steps in the 

hidden state sequences may have a greater impact on current predictions than others. Thus, relying 

solely on LSTM outputs cannot guarantee equal attention to all time steps, necessitating the 

introduction of Self-Attention to further weight these hidden states. 

3.2. Attention Weighting Layer (Attention Layer) 

The Attention mechanism assigns weights to each time step by computing inter-step correlations, 

dynamically adjusting the model’s focus on key information in the sequence. The specific steps are 

as follows: 
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1. Query, key, and value generation: Linearly transform hidden states ℎ𝑡 into queries Q, keys K, 

and values V : 

𝑄𝑡 = 𝑊𝑄 · ℎ𝑡 , 𝐾𝑡 = 𝑊𝐾 · ℎ𝑡 , 𝑉𝑡 = 𝑊𝑉 · ℎ𝑡 

where 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 are trainable parameters. 

2. Attention weight calculation: Compute attention weights via the dot product of queries and 

keys, followed by scaling and normalization: 

aij = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾𝑗

𝑇

√𝑑𝑘

) 

Here, 𝛼𝑖𝑗 denotes the attention weight of time step 𝑖 on time step 𝑗, and 𝑑𝑘 is the dimensionality 

of the key vectors. 

3. Weighted summation: Generate context vectors 𝑧𝑖 by weighted summation of value vectors 𝑉 

using attention weights: 

𝑧𝑖 = ∑ 𝑎𝑖𝑗𝑉𝑗

𝑇

𝑗=1

 

The resulting context vectors 𝑍 = {𝑧1, 𝑧2, ⋯ , 𝑧𝑇} reflect the importance of each time step in the 

sequence and encapsulate global contextual information. 

This integrated framework enhances LSTM’s modeling capability through the Attention 

mechanism, improving both long-term dependency capture and critical information identification in 

complex time series prediction tasks.[23] 

Figure 2 illustrates the architecture of the LSTM-Attention model. The input sequence is 

processed by the LSTM layer to extract temporal features, followed by dynamic context vector 

computation via the Attention mechanism, ultimately yielding power prediction results. 

 

Figure 2: LSTM-Attention Model Flowchart 

4. Experimental Design and Results Analysis 

4.1. Experimental Setup 

To validate the effectiveness of the proposed model, experiments were conducted on real-world 

wind power datasets. The dataset includes features such as wind direction, temperature, humidity, 

air pressure, wind speed, and actual power output. Data were normalized and split into training, 

validation, and test sets in a 7:1:2 ratio. The experiments were implemented using the PyTorch 

framework on an NVIDIA GPU, with Mean Squared Error (MSE) as the loss function, Adam as the 

optimizer, and a learning rate of 0.001. 

The following three models were compared: 

• Traditional RNN model (Baseline): A conventional RNN model for power prediction. 

• LSTM model: An LSTM network for time series prediction. 

• LSTM + Attention model: Combines LSTM with Self-Attention to enhance focus on critical 

time steps. 
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4.2. Results Analysis 

4.2.1. Training and Validation Loss 

Table 1: Loss Comparison Across Models 

Model Training Loss Validation Loss 

Traditional RNN 0.0221 0.0168 

LSTM 0.0224 0.0165 

LSTM + Attention 0.0186 0.0138 

Table 1 compares the training and validation losses across models. The results reveal significant 

differences in performance. In terms of training loss, the traditional RNN and LSTM models exhibit 

comparable values ( 0.022), indicating their ability to quickly learn basic data patterns. However, 

the LSTM model achieves slightly better validation loss than the RNN, demonstrating superior 

temporal feature capture. In contrast, the LSTM + Attention model achieves significantly lower 

training and validation losses (0.0186 and 0.0138, respectively), indicating that the Self-Attention 

mechanism enables the model to focus more effectively on critical time steps, thereby improving 

learning efficiency and generalization. 

 

Figure 3: Training and Validation Loss of the Traditional RNN Model 

 

Figure 4: Training and Validation Loss of the LSTM Model 

Figure 3, Figure 4, and Figure 5 respectively present the changes in training and validation losses 

of the traditional RNN model, LSTM model, and LSTM + Attention model across the number of 

training epochs. 
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Figure 5: Training and Validation Loss of the LSTM + Attention Model 

As can be observed from the figures, the traditional RNN model shows a rapid decrease in loss at 

the initial stage of training but tends to stabilize at a certain point, indicating that while the model 

can quickly learn the fundamental patterns of the data in the early stages, its performance is limited 

in more complex patterns. Compared to the traditional RNN, the LSTM model demonstrates better 

convergence in both training loss and validation loss, with a smaller validation loss, indicating a 

stronger capability for modeling time series. Meanwhile, the LSTM + Attention model exhibits a 

faster decline in loss during training and ultimately achieves the lowest validation loss, suggesting 

that the attention mechanism effectively enhances the model’s focus on critical time steps, thus 

improving its generalization ability. 

4.2.2. Prediction Performance Comparison 

Through evaluations on the test set, the Root Mean Squared Error (RMSE) is used as the 

performance metric, and the results are shown in Table 2. 

Table 2: Test RMSE for Different Models 

Model RMSE 

Traditional RNN Model 0.3858 

LSTM Model 0.3851 

LSTM + Attention 0.3778 

The results show that, compared with the traditional RNN model, the LSTM model can better 

capture the nonlinear features in time series data and reduce prediction errors. Building on this, the 

introduction of the Self-Attention mechanism in the LSTM + Attention model further improves pre- 

diction accuracy, reducing the RMSE to 0.3778, indicating that this model can more effectively 

focus on critical time steps and enhance prediction performance. 

5. Conclusion 

This study proposes a wind power prediction model that combines Long Short-Term Memory 

(LSTM) networks with the Self-Attention mechanism. By incorporating the Self-Attention 

mechanism, the model can dynamically focus on key time steps in the time series, effectively 

improving the accuracy of wind power prediction. Experimental results show that the LSTM + 

Attention model out- performs traditional RNN and LSTM models across multiple metrics, 

particularly in validation loss and Root Mean Squared Error (RMSE). Specifically, the LSTM + 

Attention model can enhance focus on crucial moments through the attention mechanism, further 
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improving the model’s capability to model complex time series data and boosting prediction 

accuracy. 

Compared with traditional RNN and LSTM models, the LSTM + Attention model shows a more 

rapid decline in loss during training and exhibits superior RMSE performance on the test set. 

Experiments demonstrate that integrating the Self-Attention mechanism with the LSTM model can 

more accurately capture the temporal characteristics of wind power, reduce prediction errors, and 

exhibit stronger adaptability and generalization capability, especially when dealing with the 

complex nonlinear features inherent in wind power data. 

In summary, the combination of LSTM and the Self-Attention mechanism provides an effective 

solution for wind power prediction, enabling more accurate power forecasts in the wind power 

sector, optimizing power grid dispatch and management, and enhancing the potential for wind 

energy in the energy market. Future research could further explore the application of this model to 

other time series prediction tasks and improve prediction accuracy by integrating additional external 

information (such as weather forecasts). 
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