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Abstract: The field of text-to-music generation has witnessed remarkable progress in recent 

years, fueled by advancements in deep learning techniques. This survey paper provides a 

comprehensive overview of the state-of-the-art in this domain, focusing on three key aspects: 

model architectures, music representations, and training strategies. We first delve into the 

prevalent architectures employed for music generation, including language models, diffusion 

models, and hybrid approaches, analyzing their strengths and limitations. Subsequently, we 

explore various music representations, ranging from quantized waveforms and spectral 

features to latent representations, discussing their impact on the quality and expressiveness 

of the generated music. Finally, we examine different training strategies, such as standard 

diffusion, rectified flow, and knowledge distillation, highlighting their effectiveness and 

efficiency in optimizing model performance. Through this in-depth analysis, we aim to 

provide researchers and practitioners with a clear understanding of the current landscape and 

future directions in text-to-music generation. We also discuss open challenges and 

opportunities for further research, paving the way for the development of more sophisticated 

and versatile systems capable of generating high-fidelity and expressive music from natural 

language descriptions. 

Keywords: Text-to-music generation, deep learning, language models, diffusion models, 

music representation, waveform, spectrogram, latent representation. 

1. Introduction 

Music, as a core medium for emotional expression and cultural inheritance, has traditionally relied 

on the artistic intuition and experience of professional composers. However, traditional music 

creation faces challenges such as efficiency bottlenecks, style rigidity, and high technical thresholds, 

limiting its ability to meet the demand for personalized, real-time music in the digital age. Advances 

in deep learning, especially the use of Transformer models in natural language processing and 

diffusion models in image generation, have paved the way for new cross-modal generation tasks, 

including Text-to-Music Generation. This emerging field seeks to synthesize high-quality music 

directly from natural language instructions, aligning abstract text semantics with musical features like 

melody, rhythm, and timbre. The technological foundation for this direction rests on three key aspects: 

theoretical exploration of multimodal modeling, where music generation requires learning from both 

symbolic text and continuous audio signals; dual empowerment of data and computational power, 

with large-scale music datasets and GPU capabilities enabling the training of complex generative 
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models; and urgent demand from application scenarios, driven by use cases in game/film music 

automation, personalized recommendations, and assisting disabled individuals. Current technological 

trends include language models like MusicLM and MusicGen, which use a phased generation strategy, 

and diffusion models such as Riffusion and Noise2Music, which excel in audio fidelity and style 

diversity. Despite these advancements, gaps remain, including a semantic gap in fine-grained 

alignment between text descriptions and music’s emotional nuances, a structural gap in modeling 

long-term dependencies, and an evaluation gap due to a lack of unified objective metrics for assessing 

music quality. Understanding these gaps and the differences between various architectures is crucial 

for overcoming technical bottlenecks and advancing creative AI, with this review offering a 

comprehensive overview of the field’s evolution and potential for human-machine co-creation. 

This paper focuses on deep learning-based text-to-music generation technologies, providing a 

systematic analysis of the key technical frameworks, challenges, and research progress in the field. 

The scope is defined to include end-to-end generation models, such as Transformer-based language 

models and diffusion models, with an emphasis on how these models extract temporal and structural 

features from text semantics for music generation. It excludes traditional symbolic music generation 

methods like MIDI sequence generation and rule-based techniques. The paper also examines three 

primary representations of music signals—quantized waveforms, spectral features (e.g., Mel-

spectrograms), and latent space encoding (e.g., VAE, diffusion latent variables)—analyzing their 

impact on generation quality, computational efficiency, and controllability. Additionally, it explores 

cutting-edge training strategies like standard diffusion training, Rectified Flow, and knowledge 

distillation, highlighting their relationship to generation performance. The core goals include: 

deconstructing technological architectures (e.g., MusicLM and Riffusion) to reveal the 

complementary strengths of language models in structured music generation and diffusion models in 

high-fidelity audio synthesis; diagnosing the challenges of multi-granularity alignment, long-

sequence modeling, and evaluation systems; and offering forward guidance on emerging directions 

like cross-modal learning, neural audio encoding, and human feedback reinforcement learning 

(RLHF). The paper aims to provide value by constructing a triadic ”architecture-

representationtraining” technical analysis system, offering decision support for technical selection 

based on quantitative analysis, and exploring the ecological implications of generative music 

technology on artistic production paradigms, including copyright ethics, creator collaboration, and 

human-machine interaction design. 

2. Model architectures for text-to-music generation 

2.1. Language Models (LMs) 

Language models (LMs) are widely used in text-to-music generation by converting textual input into 

a music representation to generate corresponding audio content. Transformer-based models, such as 

MusicLM [1], MusicGen [2], and MeLoDy [3], are the main approaches, utilizing self-attention 

mechanisms to process text and music relationships, enabling the generation of structured music over 

long time spans. MusicLM leverages hierarchical encoding to map text into high-dimensional feature 

vectors for high-quality audio generation, though it demands significant computational resources. 

MusicGen processes structured audio features like Mel spectrograms to generate music matching the 

text description, and MeLoDy innovates with multimodal learning by incorporating both text and 

audio features. While LMs offer advantages such as long-range dependency modeling and parallel 

processing, they face challenges like high computational costs and instability during generation, 

particularly with complex musical structures. Recurrent Neural Networks (RNNs), including LSTM 

and GRU variants, were previously dominant in music generation, excelling in sequential modeling 

but struggling with long sequences, parallelization, and generation accuracy. LMs, especially 
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Transformer-based models, are more flexible and controllable, allowing users to specify music style 

or emotion. However, they rely on large-scale data for training, may lack diversity in generation, and 

face challenges in precise control over complex musical expressions. Figure 1 shows the architecture 

for text-to-music generation. 

 

Figure 1: Architecture for Text-to-music Generation 

2.2. Diffusion Models (DMs) 

Diffusion Models (DMs) have advanced in generative modeling, particularly in image and audio 

generation, and have shown strong capabilities in text-to-music generation. These models work by 

progressively denoising data, consisting of a forward diffusion process where noise is added to real 

data until it becomes nearly pure noise, and a reverse denoising process where the model learns to 

recover the original data. Notable models like Denoising Diffusion Probabilistic Models (DDPM), 

Improved Denoising Diffusion Models (IDDPM) [4], and Score-based Generative Models enhance 

generation quality and diversity. Applications in text-to-music generation include Mousai [5], which 

generates music based on text descriptions, Noise2Music [6], which maps noise to audio space while 

preserving stylistic details, and Riffusion [7], which generates music from spectrograms with simple 

text inputs. Diffusion models are advantageous for producing complex, expressive music segments, 

and they generally outperform traditional models like GANs in generation quality, offering high 

diversity and training stability. However, their limitations include slow generation speed due to 

multiple denoising steps, high computational resource demands, and large data requirements, making 

real-time applications challenging. 

2.3. Hybrid Models 

Hybrid models combine different generative models, typically blending language models and 

diffusion models, to overcome the limitations of individual approaches and enhance the quality, 

controllability, and diversity of the generated output. By combining language models (such as 

Transformers), which understand and generate text descriptions, with diffusion models that excel in 

generating high-quality music, hybrid models leverage the strengths of both. The advantages of this 

approach include the ability of language models to extract features like emotion and style from natural 

language, guiding the diffusion model to generate music that aligns with these descriptions, while 

diffusion models ensure high sound quality and diversity. However, challenges remain in ensuring 

effective collaboration between the models and maintaining high-quality music generation. Other 

hybrid methods involve combining RNNs with diffusion models for better long-sequence modeling 

or using Variational Autoencoders (VAEs) alongside diffusion models to improve diversity and 

quality by utilizing latent space. The potential advantages of hybrid models include comprehensive 

benefits, such as balancing text understanding and high-quality generation, and improved control over 

the style, emotion, and structure of the music. On the other hand, challenges include coordination 
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issues between different models, the complexity of training with large labeled data, and slower 

generation speeds, particularly when incorporating diffusion models. 

3. Music Representations 

3.1. Quantized Waveform Representation 

In music generation, waveform representation is a direct and accurate method of audio expression, 

capturing original sound information by converting audio signals into discrete digital points. This 

approach preserves detailed characteristics of the sound, including frequency, amplitude, and 

temporal features. Waveform quantization involves converting continuous analog signals into digital 

form through sampling and quantization techniques. Sampling divides the audio signal into discrete 

time points at a specific frequency, often 44.1 kHz or higher, while quantization maps the amplitude 

values to a finite digital range, with common depths being 16-bit or 24-bit. Quantization introduces 

errors, known as quantization noise, which may cause distortion, particularly at lower bit depths. The 

advantages of waveform representation include high fidelity, as it directly reflects the original audio 

signal and captures subtle variations, resulting in more realistic generated music, and rich detail 

expression, making it suitable for high-quality audio generation tasks. However, the approach also 

has limitations, such as high computational resource consumption due to the large storage and 

processing needs, especially for high-quality audio generation. Additionally, generating audio 

directly from waveforms is more challenging than from spectrograms or other features, requiring 

models to handle the complexity of continuous waveform generation, which places greater demands 

on computational capacity. 

3.2. Spectral Feature Representation 

Spectral feature representation converts audio signals into frequency-domain features, offering a 

more compact and efficient way to represent audio compared to waveform representation. By 

analyzing the frequency distribution of the audio signal, this method captures important 

characteristics of the sound. A spectrogram is created by decomposing the audio signal using the 

Short-Time Fourier Transform (STFT), displaying the frequency strength distribution over time, and 

is commonly used to represent the spectral information. The Mel-spectrogram, based on the Mel scale, 

simulates human auditory perception by transforming the audio signal into amplitude information 

across Mel frequency bands, making it particularly suitable for music generation tasks. The Mel-

spectrogram’s advantage lies in its ability to simulate human hearing more closely, resulting in more 

natural-sounding music. In music generation, spectral feature representations, particularly Mel-

spectrograms, are widely used. For example, in deep learning-based music generation models, audio 

signals are typically converted into Mel-spectrograms for training and generation. These models can 

produce high-quality audio by learning spectrogram patterns, and they are also effective in modeling 

emotions and styles. Spectral features enable generation models to learn the patterns associated with 

specific emotional or stylistic characteristics, allowing the creation of music that matches given input 

text or emotional cues. The advantages of spectral feature representation include its compactness and 

efficiency, as spectrograms require fewer parameters than waveforms, reducing computational 

resource consumption. Additionally, since the frequency domain provides a stronger structural nature, 

it allows models to capture audio regularities more effectively. However, there are limitations, such 

as the loss of some audio quality during the transformation to spectral features, which can result in a 

lower fidelity compared to waveform representation. Additionally, reconstructing the original audio 

signal from a spectrogram, especially a Mel-spectrogram, is challenging. Although techniques like 

the Inverse Short-Time Fourier Transform (ISTFT) can be applied, the reconstructed audio may still 

suffer from detail loss and distortion. 
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3.3. Latent Representations 

Latent representation refers to mapping audio data to a low-dimensional latent space, enabling more 

efficient processing and generation. Variational Autoencoders (VAEs) are one of the most widely 

used techniques for latent representation, compressing complex high-dimensional audio into a latent 

space and generating new audio from that space. A VAE consists of an encoder, which compresses 

the audio into a latent representation, and a decoder, which generates new audio from that latent space. 

The training objective of a VAE is to maximize the lower bound of the log-likelihood of the data, 

allowing the model to learn effective latent representations. In music generation, VAEs can produce 

diverse audio segments and facilitate smooth transitions by interpolating in the latent space, making 

them suitable for tasks like melody generation and style transfer. Other latent representation 

techniques include Generative Adversarial Networks (GANs) and autoregressive models. GANs use 

a competitive training process between a generative and a discriminative model to generate high-

quality audio, while autoregressive models generate audio step-by-step by using the previous output 

as input for the next step. These techniques have widespread applications in audio generation. The 

main advantages of latent representations are dimensionality reduction, which simplifies the training 

process by mapping audio signals to a low-dimensional latent space, and the ability to generate 

diverse and flexible music, excelling in tasks like style transfer and audio transformation. However, 

latent representations also have limitations, such as lower generation precision compared to direct 

waveform generation, due to information loss during compression. Additionally, the structure of 

latent space is often difficult to interpret, leading to potential challenges in controlling the generated 

output and unpredictability in the results. 

4. Training Strategies 

4.1. Standard Diffusion Training 

Diffusion models (DMs) have garnered significant attention for their success in generative tasks, 

particularly in generating images and audio. The standard diffusion training involves a two-step 

process: forward and reverse diffusion. In the forward diffusion process, noise is progressively added 

to the data, such as audio or images, with each diffusion step increasing the noise until the data 

becomes pure noise. This process is fixed and independent of the training data, and its main objective 

is to provide training data for the subsequent denoising process. The reverse diffusion process is 

where the model plays a crucial role. During training, the model learns to recover the original data 

from the noisy samples by progressively removing noise, essentially reversing the forward diffusion 

process. The model’s goal in this phase is to restore the clear, structured data from the noisy input. 

The loss function commonly used in diffusion model training is based on noise removal, with the 

objective of minimizing the difference between the noise predicted by the model and the true noise 

at each time step. The mean squared error (MSE) is typically employed as the loss function, defined 

as: 

L = E[∥ϵθ(xt,t) − ϵ∥2] 

where ϵθ(xt,t) represents the noise predicted by the model at time step t, ϵ is the real added noise, and 

xt is the data after t steps of diffusion. This loss function helps the diffusion model efficiently learn 

the denoising process, resulting in high-quality audio generation. 

4.2. Flow-based Model Training 

Flow-based models [8], [9] are a class of generative models that generate data through parameterized 

invertible transformations. These models map a simple latent distribution, such as a standard normal 
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distribution, to a complex data distribution, like audio data, using a series of invertible transformations. 

Unlike traditional Generative Adversarial Networks (GANs), which rely on a discriminator to assess 

data quality, flow-based models directly learn the data generation process. The architecture typically 

consists of multiple invertible transformations, each layer of which captures the complexity of the 

data distribution while ensuring that the mapping from latent space to data space remains invertible. 

By optimizing these transformations, the model generates samples that resemble real data. One of the 

key advantages of flow-based models is their fast generation speed, as the process is deterministic 

and does not require adversarial training like GANs. Additionally, flow-based models offer precise 

control over the generation process, leading to more stable and consistent output. Moreover, unlike 

GANs, flowbased models avoid the mode collapse problem, ensuring diversity in generated samples 

during training. These features have enabled flow-based models to perform well in audio generation 

tasks, such as music synthesis and speech generation. 

4.3. Knowledge Distillation 

Knowledge distillation [10] is a model compression technique designed to transfer the knowledge 

from a large, complex model to a smaller, more efficient model. This process enhances the efficiency 

of the smaller model without a significant reduction in performance. Knowledge distillation typically 

occurs in two stages: first, a powerful ”teacher model” is trained, and then the knowledge from the 

teacher is transferred to a smaller ”student model” by minimizing the difference between their outputs. 

The teacher model, being more complex and expressive, provides the student model with the ability 

to achieve similar performance despite having fewer computational resources. In the context of music 

generation, knowledge distillation can improve the performance of smaller generative models, 

making them more suitable for resource-constrained environments. For example, a large music 

generation model (such as a Transformer-based model) can be trained first, and its knowledge can 

then be distilled into a smaller model that retains the ability to generate high-quality music while 

significantly reducing computational overhead during inference. 

5. Evaluation Metrics And Datasets 

5.1. Objective Metrics for Music Generation 

Objective metrics are used for quantitatively evaluating the quality of generated music and can 

typically be computed through automated methods, facilitating large-scale evaluations. Audio quality 

metrics, such as Frechet Audio Distance (FAD),  ́ are commonly used to measure the similarity 

between generated and real audio. FAD calculates the difference between the distributions of audio 

samples by transforming audio into feature representations, such as spectral features or Mel 

spectrograms, and comparing the feature distributions of generated and real audio. The process 

involves extracting features from audio using deep neural networks (e.g., VGGNet), calculating the 

mean and covariance of the feature space for both generated and real audio, and computing the 

Frechet distance between these two feature sets. Smaller distances indicate that the generated audio  ́

is more similar to the real audio. Musicality metrics, such as pitch accuracy and rhythm accuracy, 

evaluate the performance of generated audio in terms of melody, harmony, and rhythm. Pitch 

accuracy assesses whether the pitch of the notes in the generated audio matches the original notes by 

calculating the error between the fundamental frequency (F0) in the audio and the real notes. Rhythm 

accuracy evaluates whether the rhythm of the generated audio aligns with the rhythm pattern of the 

original music, typically analyzed by examining beats and rhythmic patterns, such as quarter notes 

and eighth notes. These musicality metrics help assess the quality, coherence, and expressiveness of 

generated music. 
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5.2. Subjective Evaluation Methods 

Although objective metrics provide valuable quantitative evaluations, subjective evaluation methods 

still hold significant importance in the field of music generation. Subjective evaluations are typically 

performed through manual auditory tests, which can directly reflect human listeners’ perceptions. 

Listening tests are conducted by having reviewers listen to the generated audio and score it based on 

various aspects, such as audio quality, musicality, emotional expression, and creativity. The 

evaluation dimensions include: Audio Quality, which refers to the clarity and naturalness of the audio; 

Musicality, which assesses the coherence of musical elements such as melody, harmony, and rhythm; 

Emotional Expression, which evaluates whether the generated audio conveys specific emotions like 

happiness or sadness; and Creativity, which measures the uniqueness and originality of the generated 

audio. These evaluation results provide direct feedback on the effectiveness of music generation 

models, guiding further improvements. However, subjective evaluation faces several challenges: 

Inconsistency of Evaluation Criteria, as different listeners may have different perceptions and scores 

for the same audio; Complexity of Evaluation, as the aesthetic standards of music are complex, 

making it difficult for reviewers to evaluate all dimensions of musicality accurately; and Time and 

Cost of Evaluation, as large-scale listening tests require significant time and resources, with 

potentially low repeatability. To overcome these challenges, researchers often design standardized 

evaluation processes, use multiple reviewers for scoring, or combine objective metrics with subjective 

evaluations for a more comprehensive assessment. 

5.3. Common Datasets for Text-to-Music Generation 

Generating high-quality music requires large training datasets. Below are some commonly used 

datasets for text-to-music generation research. The Million Song Dataset contains over one million 

songs and is widely used in music generation and recommendation system research. It provides 

metadata for songs, such as artist, album, and genre, which can be utilized for text-based music 

generation tasks. The FMA (Free Music Archive) is an open-source music dataset that includes 

various music genres and is suitable for music generation and analysis research. The FMA dataset 

provides complete audio files and associated tags for model training and evaluation. AudioSet is an 

audio dataset developed by Google that contains over two million audio clips. It is widely applied in 

audio classification, generation, and recognition tasks. The audio tags cover a variety of sound events, 

making it suitable for a wide range of audio generation tasks. These datasets provide rich training 

data for text-to-music generation, helping models learn the ability to generate music from natural 

language descriptions. 

6. Conclusion 

This paper reviews the latest developments in the field of text-to-music generation, focusing on 

several key aspects. Firstly, it examines model architectures, highlighting the application of language 

models, diffusion models, and hybrid models in music generation, along with their respective 

advantages and limitations. Secondly, it discusses music representation, exploring the impact of 

various methods such as quantized waveforms, spectral features, and latent representations on 

generation quality. The paper also addresses training strategies, detailing how techniques like 

standard diffusion training, corrected flow training, and knowledge distillation contribute to improved 

model performance. 
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