
Common lossless compression algorithms and their error

resiliency performance

Mingchu Zhang

Xidian University, Xian, Shanxi Province, 710000, China

20012100025@stu.xidian.edu.cn

Abstract. With the development of communication technology and computer technology,

many related industries, such as multimedia entertainment, put forward higher requirements for

storing and transmitting information data. The research of data compression technology has

attracted more and more attention. Therefore, the error resiliency ability of data compression

algorithm is particularly important. How to enhance the error resiliency of data compression

communication systems has been a hot topic for researchers. This paper mainly introduces the

lossless data compression technology and its basic principle and performance index. Two

typical lossless compression codes, Huffman and Arithmetic coding are deeply studied,

including the principle of coding and the problem of error resiliency. Huffman coding and

Arithmetic coding are two very important lossless compression codes widely used. The ability

to resist channel error is an important index for data compression in communication. It is of

great significance to further improve the channel adaptability of data compression to study the

above two kinds of codes and their ability to resist channel error.

Keywords: Data Compression, Huffman Coding, Arithmetic Coding, Error Resiliency.

1. Introduction

In the world of today, with the development of communication technology and computer technology,

the media data in data communication, such as video and audio, are all digitized. A large amount of

data resources also greatly burden memory capacity, and broadband channels. Due to technical

limitations, many hardware technologies can not meet storage needs, which promotes the research and

development of data compression technology theory. Especially with the rise of multimedia

technology, the key problem to be solved is the storage, processing, and transmission of a large

amount of data. Data compression technology can effectively solve this problem, which makes the

research of data compression technology receive more and more attention. Data compression

originated in information theory in the 1940s. The main purpose of data compression is to store and

transmit information data in compressed form. The theoretical limit of data compression is information

entropy [1]. Before 1977, data compression was mainly a part of information theory. With the

development of computer technology, the research of data compression algorithms has been extended

to the fields of image processing, speech processing, and so on. It is no longer limited to source coding

in information theory.

In 1997, Jacob Ziv and Abraham Lempel proposed a new compression method -- LZ77 in the paper

‘A Universal Algorithm for Sequential Data Compression’ [2]. In 1978, they also published the article

‘Compression of Individual Sequences via variable-rate Coding’ [3] and proposed an improved

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

162

algorithm of LZ77 -- LZ78, which brought data compression research into a new stage. In 1984, Terry

Weleh improved the LZ78 algorithm and gave an implementation method called the LZW algorithm

[4]. Current commonly used compression tools such as Winzip are based on these compression

algorithms.

The research on data compression technology is still the focus of current researchers, and the

pursuit of better compression technology has always been their goal. In 2019, B Han et al. put forward

an upgraded LZW prefix coding scheme based on azimuth information [5], which is used to solve the

problems caused by high acquisition speed, low data transmission bandwidth and limited hardware

resources. Likely, when using uniform probability distribution sampling points to compress digital

signals, the compression rate may not be high or the acquisition speed may not match. The

compression ratio can be raised by 26.25% using the improved algorithm without increasing the

hardware storage space and complexity. In addition, the application of data compression algorithms in

various fields has also been greatly developed. In 2019, C Liu and Q Liu proposed a convolutional

neural network compression method based on LZW encoding [6]. This method is used to solve the

problem that the Convolutional Neural Network(CNN) parameters are large and difficult to be

transplanted to the embedded platform. After pruning and quantification, the compression ratio of

LZW encoding can reach 25. 338. In 2020, ZJ Ahmed and LE George proposed an efficient

compression system employing transform coding and LZW compression technique [7]. This system

plays an significant role in reducing the amount of data in image compression. The compression

results shows that the compression ratio has been improved and the fidelity is acceptable.

Source coding, or data compression, aims to make each symbol transmitted over the channel carry

as much information as possible; The goal of channel coding or error control is to make each symbol

as few errors as possible. Shannon’s source-channel separation theory [8] points out that source coding

and channel coding can be implemented independently without affecting the system’s overall

performance. However, this theory assumes that the coding complexity of source coding and channel

coding is infinite, under which the tiny bit error rate can be obtained. In fact, this assumption does not

work. If the channel bit error is large, the total output and input may have a large error. Therefore, the

error resiliency of data compression algorithm is very important. Especially in the fields with special

communication channels such as satellite communication and military communication, the ability to

resist channel error is very critical.

Currently, most images and videos are encoded by run-length and entropy coding to improve

compression efficiency (mainly Huffman coding). In the process of noisy channel transmission,

variable length codes are prone to bit errors. However, if the fixed length code is used, it is difficult to

obtain high efficiency in some environments. Therefore, improving the ability to resist channel error is

also needed to improve efficiency.

In 2013, Yin Kai optimized some coding algorithm according to the error distribution law of

different channel conditions and proposed a joint source/channel coding and decoding method in the

paper’Technology of Error Detection&Correction Coding and Decoding in Satellite Image Lossless

Compression’ [9]. In 2019, to solve the problem of packet loss in video transmission and improve the

error resilience of encoded video, M Kazemi et al. proposed an intra coding scheme to obtain the best

rate-distortion performance in the paper’Intra Coding Strategy for Video Error Resiliency: Behavioral

Analysis’ [10]. This coding scheme has higher coding bit rates and loss than other intra-coding

schemes.

This paper aims to study data compression techniques and common lossless data compression

algorithms. The structure of the research is divided into three parts. The first part gives an overview of

data compression technology, including its classification and performance indicators. In the second

part, two lossless compression algorithms -- Huffman coding as well as Arithmetic coding are studied

deeply. At first, the basic principle of Huffman coding is introduced, which leads to the error

resiliency problem of Huffman coding. The bidirectional decoder is theoretically explored and

experimentally analyzed. Secondly, Arithmetic coding is introduced. The principle of this algorithm is

analyzed, and the common ways to resist channel error are summarized. The third part summarizes the

thesis and explores the future research direction.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

163

https://xueshu.baidu.com/s?wd=author:(ZJ%20Ahmed)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://xueshu.baidu.com/s?wd=author:(LE%20George)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person

2. Overview of data compression technology

Data compression is a technical method to reduce the amount of data and storage space, and improve

the storage, processing efficiency and transmission technology without losing useful information [11].

Data compression was originally an important topic in information theory, where it is called source

coding. However, in recent years, data compression is not limited to the research and discussion of

coding methods, and has gradually formed a relatively independent system. It mainly studies the

methods of data representation, transmission, and transformation, intending to reduce the storage

space that data takes up and the time needed for transmission [12].

2.1. Data compression classification

Data compression includes two kinds of compression: lossy and lossless. (1) Lossy compression refers

to the reconstruction of compressed data, which is greatly different from the original data, but the way

of data expression information is not affected. This algorithm is highly efficient in compression [13].

Lossy compression is mostly used for speech, image, and video compression. (2) Lossless data

compression is the reconstruction of the used data. Data after reconstructing is the same as the original

data, mainly used for text files, databases, special image data and other similar compressed data. This

paper mainly studies lossless data compression.

2.2. Performance indicators of data compression technology

Data compression, in general, is a technique that uses the least number of digits to represent a signal.

Data compression methods are mainly measured by compression ratio (compression efficiency),

complexity, and anti-channel error capability. The entropy of data before and after compression is

compared to determine the compression ratio in information theory. Today, however, there is another

way to define the compression ratio: the ratio of the data after compression to the original data. The

complexity of a signal compression system refers to the amount of hardware equipment needed to

implement the encoding and decoding algorithm. The selection of a data compression algorithm is an

important factor. Different algorithms have different complexity in different scenarios. At present, the

error resiliency ability of the compression system has become an important index to evaluate the

compression system, which is of great significance to overcome bad channel conditions and resist

interference.

3. Research on basic lossless compression algorithm and its error resiliency

3.1. Huffman coding

Huffman coding is proposed by David Huffman in 1952. It is a general data compression method,

which is the basis of most general compression programs. And it is often used as a step in the

compression process. Huffman coding has high efficiency, fast operation speed and flexible

implementation. At present, the algorithm has formed the core of today’s compression software [14].

3.1.1. Basic principle. Huffman coding is a statistical compression method. The central idea of this

method is to encode symbols according to the probability of occurrence of source data [15] . The basic

principle is to construct Huffman trees according to the frequency of character occurrence and use

Huffman trees for encoding. The higher the frequency of the value, the shorter the corresponding

binary encoding length; The less frequent the value, the longer the binary encoding length. So as far as

possible, use fewer symbols to represent the data, to achieve compression effect.

This paper illustrates the specific coding process of Huffman coding through examples. Input:

known n=5, weight set W={5,6,2,9,7}.

Huffman coding process start with arranging source symbols in descending order by weight, Then

add the two symbol weights with the lowest weight value to form a new weight value, and rearrange

according to the weight value. As shown in step 1 and step in the Figure 1.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

164

Figure 1. The steps of Huffman coding.

Then, repeat the previous steps until only one weight is left to form a Huffman coding tree. At each

pair of merged nodes, the source symbol with high probability is represented by code symbol ‘0’,

while the source symbol with low probability is represented by ‘1’. As shown in Figure 3.

Figure 2. Encode Huffman tree.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

165

Finally, the sequence of ‘0’ or ‘1’ on the branch from the root of the Huffman tree to each leaf node is

recorded, so as to obtain the Huffman code of each symbol [16]. As shown in Table 1.

Table 1. The result of Huffman coding.

Symbol Weight code

A 6 00

B 7 01

C 5 100

D 2 101

E 9 11

3.1.2. Research on the error resiliency performance of Huffman Coding

3.1.2.1. Research status of error resiliency in Huffman coding. Huffman coding is a heterologous

header code whose correctly transmitted code stream can only be split uniquely [17]. When the bit

error occurs, the code segment with bit error and the following code words will have a decoding error.

However, due to the unique translatability of Huffman coding, after a few bits, the code-word will be

properly re-divided and thus correctly decoded. In other words, Huffman coding does not spread

transmission errors. However, for adaptive Huffman coding, when the error occurs, the update of the

Huffman codebook at the decoding end may be affected, thus affecting the correct decoding.

Nowadays, there are many pieces of research on the error resistance of Huffman coding. A typical

error resistance method, reversible variable length code (RVLCS), is introduced here. The basic idea

of reversible variable length codes is that they can be decoded in both forward and reverse directions.

Once there is a bit error, even if they jump to the next resynchronization mark in the code stream,

reversible variable length codes can still decode the damaged part of the code stream to limit the

influence of bit error [18]. For example, Jiangtao Wen and John D. Varasenor introduced a coding

scheme that replaces each Golomb-Rice code’s prefixes that begin and ends with ‘1’ and the rest of

the prefix is ‘0’. When the prefix length is 1, use 0 to replace it [19]. The suffix and length assignment

of RVLCs codes and Golomb-Rice codes are consistent.

3.1.2.2. Bidirectional decodable streams of prefix code-words. This paper introduces a bidirectional

decoding method for variable length code (VLC) streams [20]. This method can find the bit error in

the code stream, and the coding efficiency is good.

A. Encoder

Fig. 2 shows the block diagram of the encoder. Divide Symbol S(n) into several groups and denote

by B(n), as shown in Formula (1).

The code-word of each code group in B(n) is flipped and denoted by B‘(n).

B=B(1)|B(2)…|B(N)
=b1(1)|b2(1)|b3(1)|…|b1(n)|b2(n)|…|bl(N)-1(N)|bl(N)(N) (1)

The code-word of each code group in B(n) is flipped and denoted by B‘(n).

B‘(n)=bl(n)(n)|bl(n)-1(n)|…|b2(n)|b1(n) (2)

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

166

As shown in the encoder block diagram, add 0 of L length after B(n), and add 0 of L length before

B‘(n), and perform bit by bit XOR operation on the two groups of code streams to obtain C, as shown

in Formula (4).

C=(B(1)|B(2)|…|B(N)|0|…|0) ⊕ (0|…|0|B‘(1)|B‘(2)|…|B‘(N)) (3)

Since it is bidirectional decoding, the offset needs to meet:

L≥lmax= max
n

l(n) (4)

Figure 3. Block diagram of the reversible length decoder.

B. Decoding in forward direction

Figure 3 shows the block diagram of the decoder. The output of the forward decoder is as follows:

(B(n)000…00)=C⊕ (000..00B‘(n)) (5)

It can be seen from the above equation, that the last L bits of B′ are the same as the last L bits of C.

The last L bits of the forward decoding stream are all 0. So the last L bits of C are redundant for

decoding in the forward direction. Synchronization can be checked according to these properties. If the

last L bits of decoding is not all 0, it means that synchronization has been lost and bit errors has

occurred.

Figure 4. Block diagram of the reversible length decoder.

C. Decoding in Reverse Direction

The same is shown in Figure 3. We can first translate the last code group of B‘ by the character that

the last L bits of C and B‘ are the same. Since each code group of B′ is the flip of each code group of B,

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

167

and we know the length of L, we can obtain the code stream B. This decoding process continues until a

bit error or the beginning of stream C is encountered.

3.1.2.3. Experimental analysis. This paper uses experiments to verify the correctness of the method.

Use Huffman code to encode these characters, flip them according to the principle of bidirectional

decodable streams of prefix code-word, and Table 1 is obtained.

Table 2. Symbol code table.

Symbol Huffman code Flipped code Probability

$ 00 00 8. 0/30. 0

i 10 01 6. 0/30. 0

h 010 010 5. 0/30. 0

s 011 110 5. 0/30. 0

t 111 111 4. 0/30. 0

a 110 011 2. 0/30. 0

The resulting Huffman code is B(n), and the code stream after flipping is B‘(n). Then the operation of

equation (4) is carried out by attaching L-length zeros after B(n) and L-length zeros before B‘(n), the

resulting two sets of code streams are subjected to bit-by-bit XOR operations. The process is shown in

Figure 5.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

168

Figure 5. The decoding process of the experiment.

According to the principle of forward decoding and the properties of XOR operation, the transmitted

bitstream obtained after XOR can be changed into the original bitstream. This indicates that this

encoding method can get the correct bit stream.

If a bit error occurs, assume that the error stream is as follows:

1110101001100100111101011111010100001110100010000111101110000111011010001111100

011

In comparing the decoder with the code table, an error is reported if the decoded code does not

appear in the table. There is no 11 in the code table, but the decoder will consider it a prefix to the

symbol A, translate 110 to A, 10 to I, then translate 111 to T, 110 to A, 10 to I, and continue until the

whole code-word has been translated. The trailing 6 bits of decoding is not all 0, which means that

synchronization has been lost and bit errors has occurred.This indicates that this encoding method can

detect the bit error.

3.2. Arithmetic coding

Like Huffman coding, Arithmetic coding is also a lossless compression coding and entropy coding. As

an efficient data compression method, Arithmetic coding is widely used in many fields, such as text,

image,audio and so on. It is one of the most efficient statistical entropy coding methods so far.

3.2.1. Basic principle. The basic principle of Arithmetic coding is that the encoded message can be

represented as an Interval between the real numbers 0 and 1. The longer the message, the smaller the

encoded message is, and the more bits are required to represent that interval. This paper shows the

basic principle of arithmetic coding through examples.

Set the input source sequence as:

u=(u1,u2,…,uL),ul∈ {0,1} (7)

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

169

As shown in the figure below, initially, The interval length is [0,1). It is divided by F(1) into two

intervals:[0,F(1)) and [F(1),1) . The width of the two intervals is W(0)=P(0) and W(1)=P(1) ,

respectively, corresponding to the source symbols 0 and 1. Suppose the first source symbol is 0, and

the sequence falls into the interval [0,F(1)). Suppose the second source symbol is 1, then the sequence

falls into the interval [F(0)+W(0)P(0),F(1)). Divide the above interval into two intervals according

to probability, the width is P(010) and P(011) respectively, and the division line of the interval is

F(01)+W(01)P(0).

Figure 6. The process of dividing intervals by arithmetic coding.

By analogy, the following recurrence relations can be obtained:

F(ui+1)=F(ui)+P(ui)F(ui+1) (8)

W(ui+1)=P(ui+1)=P(ui)P(ui+1) (9)

The corresponding interval of the final sequence u is [F(u),F(u)+P(u)). Take any value of this

interval to get the result of arithmetic coding.

3.2.2. Research on the error resiliency performance of Arithmetic coding. When used with a suitable

source model, Arithmetic coding for data compression has been widely accepted as the right method

for optimum compression [21]. However, Arithmetic coding is very sensitive to errors [22]. The

transmission error of a codeword will affect the decoding of all subsequent codewords, and the error

propagation is very serious. The spread of errors is very serious. Therefore, it is very important to

study the error resiliency performance of Arithmetic coding.

In order to improve the error resiliency ability of Arithmetic coding, it is a good method to increase

redundant data to improve the error detection and correction capability of coding. Source decoding can

recover the source symbol according to the compiled binary code. The algorithm uses the automatic

synchronization of Arithmetic coding, the knowledge of source statistics and some added redundancy

to realize error detection and correction [23].

For example, Boyd et al. [24]proposed two methods to increase redundancy. The first is

introducing redundancy by adjusting the coding space so that the encoder never uses some parts. The

error will be detected when the number defined by the received encoded string enters the parts that are

never used. We call the certain proportion of the current coding interval reduced reduction factor. The

reduction factor is used to control redundancy. The second approach is to use a model with two

symbols. Encode one of them periodically. When the other is ever decoded, an error occurs.

Chou and Ramchandran [25]placed forbidden symbols to unused code intervals. Then performed

Arithmetic coding based on expanded source alphabets. If the forbidden symbol is decoded, there is an

error in the transmission.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

170

3.2.3. Comprehensive error detection for Arithmetic coding. The previous paper introduced Boyd’s

error detection method by controlling redundancy by controlling reduction factor. Let’s illustrate this

approach in detail with an example. This is shown in Figure 5. When the code point falls into the

interval (Ln,Ln
‘), the interval value is multiplied by a reduction factor R (R between 0 and 1) so that

the code point still falls into (Ln,Lm), Lm=Ln+(Ln
‘ -Ln)×R. The corresponding interval of the code

point is reduced, and the interval (Lm,Ln
‘) becomes redundant. As the coding continues, the

redundancy grows. When a bit error occurs during transmission, if a redundant value is transmitted, it

indicates a bit error. The smaller the value of R, the faster the redundancy increases and the stronger

the error detection performance.

Figure 7. Schematic diagram of comprehensive error detection coding.

Then select the value of the reduction factor. It can be seen from the above that the growth speed of

redundancy and the error detection speed is determined by the reduction factor. First, consider how

much redundancy increases by increasing the interval in terms of R for each bit. If the current interval

is of length a, the number of bits to be supplied is I(a)=-log2(a). When the interval is reduced, the

number of bits to be provided is I(Ra)=I(R)+I(a).

4. Comparison of compression performance between Huffman coding and Arithmetic coding

4.1. Compression performance of Huffman coding

Theoretically, Huffman coding can achieve the best compression effect. However, the actual

compression effect often lags behind the theoretical value. This is because information about the

Huffman tree must also be stored simultaneously when storing compressed files. This will affect the

compression effect. Generally speaking, the impact of the Huffman tree is greater for smaller files and

smaller for larger files. At the same time, the compression efficiency of Huffman coding is different

for different types of files. The following table shows the results of compression experiments on some

files [23].

Table 3. Comparison of compression effects of Huffman coding.

S/N File type

Source

file

size(K)

Compressed

file

Compression

efficiency

1

Bitmap Picture(bmp)

1288 775 42

2 1537 571 64

3 2252 1219 48

4 2305 1351 41. 4

5

Text file(txt)

0. 256 0. 045 83

6 3. 416 1. 937 44

7 9. 487 6. 016 37

8 17 14 18

9 40 33 19

10 155 100 36

11 218 145 35

12 413 303 29

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

171

13
Text file(txt)

653 442 34

14 1353 799 43

15

Audio files(wav)

18 11 40

16 55 48 15

17 95 75 23

18 169 142 18

19 336 290 16

20

Executable File(exe)

27 16 44

21 40 28 32

22 60 44. 3 28

23 389 381 5

24 857 820 7

It can be seen from the experimental results in Table 3 that Huffman coding has a good compression

effect on bmp files, txt files, wav files, and exe files, and the larger the file, the better the effect.

4.2. Compression performance of Arithmetic coding

Table 4 [23]shows the experimental results of Arithmetic coding for compressing different types of

files. It can be seen that the compression effect of Arithmetic coding is different for different file types.

Arithmetic coding has a better compression effect on bmp files, txt files, wav files, and exe files, and

the larger the file, the better the effect.

Table 4. Comparison of compression effects of Arithmetic coding

S/N File type

Source

file

size(K)

Compressed

file

Compression

efficiency

1

Bitmap Picture(bmp)

1288 88 34

2 1537 680 57

3 2252 1444 38

4 2305 1446 37. 3

5

Text file(txt)

0. 256 0. 037 86

6 3. 416 1. 937 44

7 9. 486 6. 032 37

8 17 14 19

9 40 33 19

10 155 100 36

11 218 148 34

12 413 303 29

13 653 447 34

14 1353 843 40

15

Audio files(wav)

18 11 41

16 55 48 15

17 95 76 23

18 169 142 18

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

172

Table 4. (continue)

S/N File type

Source

file

size(K)

Compressed

file

Compression

efficiency

19 336 289 16

20

Executable File(exe)

27 16 42

21 40 28 31

22 60 45 27

23 389 381 2

24 857 840 5

4.3. Comparison of two codes

Huffman coding is a special case of arithmetic coding in essence. But the problem of Huffman coding

is that the compression precision is integer bit, while the Arithmetic coding can achieve the

compression precision of decimal bit.

Arithmetic coding is more complex to implement, and the compression efficiency is slightly better

than that of Huffman. Huffman coding has low implementation complexity (less overhead), and its

compression efficiency is slightly lower than that of Arithmetic coding. The common industry practice

is optimizing the coding algorithm based on the current Huffman coding to reduce the cost.

The common applications of Huffman coding are JPEG compression coding and AAC, and

Arithmetic coding is mostly used in LC3. Table 5 shows the comparison between Hoffman coding and

arithmetic coding.

Table 5. Comparison between Huffman coding and Arithmetic coding.

 Huffman coding Arithmetic coding

Compression

accuracy

Integer bit Decimal bit

Compression

efficiency

Relatively low efficiency Relatively high efficiency

Implementation

complexity

Low complexity High complexity

Common

Applications

JEPG,AAC LC3

5. Conclusion

With the development of communication and multimedia technology, a large number of data resources

put forward higher requirements for compression technology. Data compression technology uses the

least amount of data to represent the signal sent by the source to reduce the occupied storage space and

improve information transmission rate. The key technology of data compression is excellent coding

technology. The capacity to resist channel error is an significant index to reflect the performance of

data compression coding. For example, Arithmetic coding with high compression performance has

high sensitivity to bit error, which seriously hinders the wide application of Arithmetic coding in

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

173

wireless multimedia. The quality of wireless multimedia communication can be effectively improved

by using certain methods to improve its error-resistant ability. Therefore, it is of great importance to

study the error resiliency ability of lossless compression algorithms in common use in communication.

In this paper, the author introduces lossless data compression technology and discusses its basic

principle and performance index. The common lossless compression codes are studied, and the main

object is their basic principles and error resiliency performance. Huffman coding is the best lossless

coding method from the perspective of information entropy. And because of its unique translatability,

it can quickly recover from errors. However, the error of adaptive Huffman coding will affect the

update of the Huffman coding codebook at the decoding end. This paper introduces the bidirectional

decoder with prefixes as a method to solve the bit error. Arithmetic coding has better compression

efficiency, but it is very sensitive to error and error propagation is serious. To improve the error

resiliency ability of Arithmetic coding, the error detection and correction ability of Arithmetic coding

can be improved by adding redundant data.

The next direction of research can be put in the study of lossless compression algorithms in image

compression, video compression, and other aspects of the application. In addition, there are still many

defects and deficiencies in the research on error resiliency of lossless coding. There should be different

characteristics of error resiliency in different applications, which is worthy of further research and

practice.

References

[1] Ziv J , Lempel A . A universal algorithm for data compression[J]. IEEE Transactions on Inform

ation Theory, 1977, 23(3):337-343.

[2] Ziv J , Lempel A . Compression of Individual Sequences Via Variable-Rate Coding[J]. IEEE T

ransactions on Information Theory, 1978, 24(5):530-536.

[3] Welch, T. A . A Technique for High-Performance Data Compression[J]. Computer, 1984.

[4] Yuye Pang. Research on Joint Source Channel Coding Based on Arithmetic Codes[D] . Shangh

ai Jiao Tong University, 2011.

[5] Han B, Zhang H H , Jiang H , et al. Improved LZW Prefix Coding Scheme Based on Azimuth

Information[J]. Computer Science, 2019.

[6] Liu C , Liu Q . Convolutional Neural Network Compression Method Based on LZW Encoding

[J]. Computer Engineering, 2019.

[7] Ahmed Z J , George L E . A Comparative Study Using LZW with Wavelet or DCT for Compre

ssing Color Images[C] // 2020 International Conference on Advanced Science and Engineeri

ng (ICOASE). 2020.

[8] Krippendorff K . Mathematical Theory of Communication[J]. Encyclopedia of Neuroscience, 2

009:2251-2251.

[9] Kai Yin. Technology of Error Detection&Correction Coding and Decoding in Satellite Image L

ossless Compression[D] . Huazhong University.

[10] Kazemi M , Ghanbari M , Shirmohammadi S . Intra Coding Strategy for Video Error Resilienc

y: Behavioral Analysis[J]. IEEE Transactions on Multimedia, 2019.

[11] Dongmei Bao. Research on data compression algorithm[J]. Wireless Internet Technology, 2019,

 16(21):2.

[12] Mei Y, Wen Yuan. Data compression technology and its application[M] . Publishing House of

Electronics Industry, 1995.

[13] Weimin Yan. Data Structure(2nd Edition)[M] . Tsinghua University Press,1992.

[14] Fenglin Zhang, Sifeng Liu. Huffman:improved huffman data compression algorithm[J]. Comput

er Engineering and Applications, 2007, 43(2):2.

[15] Ling Zeng, Zhihong Rao. Comparison of Several Kinds of Algorithms for Data Compression[J].

 Communication Technology , 2002(9X):4.

[16] Yonggang Wang. Wonderful binary tree[J]. Programmer, 2003(9):5.

[17] Xidong Zhou, Jiayu Lin,Chaojing Tang. Study on the Method to Increase in the Ability of Sourc

e Coding to Channel Errors[J]. Journal of Institute of Command and Technology, 2001(02):7

1-74.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

174

[18] Li Zhuo, Lansun Shen. Object-Based Video Coding—MPEG-4[J]. ZTE Technical Journals, 200

1(4):40-43.

[19] Wen J , Villasenor J D . A class of reversible variable length codes for robust image and video

coding[C] // International Conference on Image Processing. IEEE, 1997.

[20] Girod, B. Bidirectionally decodable streams of prefix code-words[J]. Communications Letters I

EEE, 1999, 3(8):245-247.

[21] Cleary, John G . Text compression /[M] .

[22] Pettijohn B D , Huffman M W , Sayood K . Joint Source Channel Coding Using Arithmetic Co

des[J]. Communications IEEE Transactions on, 2000, 49(5):826-836.

[23] Xidong Z. Data compression and its performance against channel error[D] . National Universit

y of Defense Technology, 2002.

[24] Boyd C , Cleary J G , Irvine S A , et al. Integrating error detection into Arithmetic coding[J]. I

EEE Transactions on Communications, 2002, 45(1):1-3.

[25] Chou J , Ramchandran K . Arithmetic coding-based continuous error detection for efficient AR

Q-based image transmission[J]. IEEE Journal on Selected Areas in Communications, 2000, 1

8(6):P. 861-867.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230778

175

