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Abstract. With the development of communication technology and computer technology, 

many related industries, such as multimedia entertainment, put forward higher requirements for 

storing and transmitting information data. The research of data compression technology has 

attracted more and more attention. Therefore, the error resiliency ability of data compression 

algorithm is particularly important. How to enhance the error resiliency of data compression 

communication systems has been a hot topic for researchers. This paper mainly introduces the 

lossless data compression technology and its basic principle and performance index. Two 

typical lossless compression codes, Huffman and Arithmetic coding are deeply studied, 

including the principle of coding and the problem of error resiliency. Huffman coding and 

Arithmetic coding are two very important lossless compression codes widely used. The ability 

to resist channel error is an important index for data compression in communication. It is of 

great significance to further improve the channel adaptability of data compression to study the 

above two kinds of codes and their ability to resist channel error. 

Keywords: Data Compression, Huffman Coding, Arithmetic Coding, Error Resiliency. 

1. Introduction 

In the world of today, with the development of communication technology and computer technology, 

the media data in data communication, such as video and audio, are all digitized. A large amount of 

data resources also greatly burden memory capacity, and broadband channels. Due to technical 

limitations, many hardware technologies can not meet storage needs, which promotes the research and 

development of data compression technology theory. Especially with the rise of multimedia 

technology, the key problem to be solved is the storage, processing, and transmission of a large 

amount of data. Data compression technology can effectively solve this problem, which makes the 

research of data compression technology receive more and more attention. Data compression 

originated in information theory in the 1940s. The main purpose of data compression is to store and 

transmit information data in compressed form. The theoretical limit of data compression is information 

entropy [1]. Before 1977, data compression was mainly a part of information theory. With the 

development of computer technology, the research of data compression algorithms has been extended 

to the fields of image processing, speech processing, and so on. It is no longer limited to source coding 

in information theory.  

In 1997, Jacob Ziv and Abraham Lempel proposed a new compression method -- LZ77 in the paper 

‘A Universal Algorithm for Sequential Data Compression’ [2]. In 1978, they also published the article 

‘Compression of Individual Sequences via variable-rate Coding’ [3] and proposed an improved 
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algorithm of LZ77 -- LZ78, which brought data compression research into a new stage. In 1984, Terry 

Weleh improved the LZ78 algorithm and gave an implementation method called the LZW algorithm 

[4]. Current commonly used compression tools such as Winzip are based on these compression 

algorithms.  

The research on data compression technology is still the focus of current researchers, and the 

pursuit of better compression technology has always been their goal. In 2019, B Han et al. put forward 

an upgraded LZW prefix coding scheme based on azimuth information [5], which is used to solve the 

problems caused by high acquisition speed, low data transmission bandwidth and limited hardware 

resources. Likely, when using uniform probability distribution sampling points to compress digital 

signals, the compression rate may not be high or the acquisition speed may not match. The 

compression ratio can be raised by 26.25% using the improved algorithm without increasing the 

hardware storage space and complexity. In addition, the application of data compression algorithms in 

various fields has also been greatly developed. In 2019, C Liu and Q Liu proposed a convolutional 

neural network compression method based on LZW encoding [6]. This method is used to solve the 

problem that the Convolutional Neural Network(CNN) parameters are large and difficult to be 

transplanted to the embedded platform. After pruning and quantification, the compression ratio of 

LZW encoding can reach 25. 338. In 2020, ZJ Ahmed and LE George proposed an efficient 

compression system employing transform coding and LZW compression technique [7]. This system 

plays an significant role in reducing the amount of data in image compression. The compression 

results shows that the compression ratio has been improved and the fidelity is acceptable. 

Source coding, or data compression, aims to make each symbol transmitted over the channel carry 

as much information as possible; The goal of channel coding or error control is to make each symbol 

as few errors as possible. Shannon’s source-channel separation theory [8] points out that source coding 

and channel coding can be implemented independently without affecting the system’s overall 

performance. However, this theory assumes that the coding complexity of source coding and channel 

coding is infinite, under which the tiny bit error rate can be obtained. In fact, this assumption does not 

work. If the channel bit error is large, the total output and input may have a large error. Therefore, the 

error resiliency of data compression algorithm is very important. Especially in the fields with special 

communication channels such as satellite communication and military communication, the ability to 

resist channel error is very critical.  

Currently, most images and videos are encoded by run-length and entropy coding to improve 

compression efficiency (mainly Huffman coding). In the process of noisy channel transmission, 

variable length codes are prone to bit errors. However, if the fixed length code is used, it is difficult to 

obtain high efficiency in some environments. Therefore, improving the ability to resist channel error is 

also needed to improve efficiency.  

In 2013, Yin Kai optimized some coding algorithm according to the error distribution law of 

different channel conditions and proposed a joint source/channel coding and decoding method in the 

paper’Technology of Error Detection&Correction Coding and Decoding in Satellite Image Lossless 

Compression’ [9]. In 2019, to solve the problem of packet loss in video transmission and improve the 

error resilience of encoded video, M Kazemi et al. proposed an intra coding scheme to obtain the best 

rate-distortion performance in the paper’Intra Coding Strategy for Video Error Resiliency: Behavioral 

Analysis’ [10]. This coding scheme has higher coding bit rates and loss than other intra-coding 

schemes. 

This paper aims to study data compression techniques and common lossless data compression 

algorithms. The structure of the research is divided into three parts. The first part gives an overview of 

data compression technology, including its classification and performance indicators. In the second 

part, two lossless compression algorithms -- Huffman coding as well as Arithmetic coding are studied 

deeply. At first, the basic principle of Huffman coding is introduced, which leads to the error 

resiliency problem of Huffman coding. The bidirectional decoder is theoretically explored and 

experimentally analyzed. Secondly, Arithmetic coding is introduced. The principle of this algorithm is 

analyzed, and the common ways to resist channel error are summarized. The third part summarizes the 

thesis and explores the future research direction.  
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2. Overview of data compression technology 

Data compression is a technical method to reduce the amount of data and storage space, and improve 

the storage, processing efficiency and transmission technology without losing useful information [11]. 

Data compression was originally an important topic in information theory, where it is called source 

coding. However, in recent years, data compression is not limited to the research and discussion of 

coding methods, and has gradually formed a relatively independent system. It mainly studies the 

methods of data representation, transmission, and transformation, intending to reduce the storage 

space that data takes up and the time needed for transmission [12].  

2.1. Data compression classification 

Data compression includes two kinds of compression: lossy and lossless. (1) Lossy compression refers 

to the reconstruction of compressed data, which is greatly different from the original data, but the way 

of data expression information is not affected. This algorithm is highly efficient in compression [13]. 

Lossy compression is mostly used for speech, image, and video compression. (2) Lossless data 

compression is the reconstruction of the used data. Data after reconstructing is the same as the original 

data, mainly used for text files, databases, special image data and other similar compressed data. This 

paper mainly studies lossless data compression.  

2.2. Performance indicators of data compression technology 

Data compression, in general, is a technique that uses the least number of digits to represent a signal. 

Data compression methods are mainly measured by compression ratio (compression efficiency), 

complexity, and anti-channel error capability. The entropy of data before and after compression is 

compared to determine the compression ratio in information theory. Today, however, there is another 

way to define the compression ratio: the ratio of the data after compression to the original data. The 

complexity of a signal compression system refers to the amount of hardware equipment needed to 

implement the encoding and decoding algorithm. The selection of a data compression algorithm is an 

important factor. Different algorithms have different complexity in different scenarios. At present, the 

error resiliency ability of the compression system has become an important index to evaluate the 

compression system, which is of great significance to overcome bad channel conditions and resist 

interference.  

3. Research on basic lossless compression algorithm and its error resiliency 

3.1. Huffman coding 

Huffman coding is proposed by David Huffman in 1952. It is a general data compression method, 

which is the basis of most general compression programs. And it is often used as a step in the 

compression process. Huffman coding has high efficiency, fast operation speed and flexible 

implementation. At present, the algorithm has formed the core of today’s compression software [14].  

3.1.1.  Basic principle. Huffman coding is a statistical compression method. The central idea of this 

method is to encode symbols according to the probability of occurrence of source data [15] . The basic 

principle is to construct Huffman trees according to the frequency of character occurrence and use 

Huffman trees for encoding. The higher the frequency of the value, the shorter the corresponding 

binary encoding length; The less frequent the value, the longer the binary encoding length. So as far as 

possible, use fewer symbols to represent the data, to achieve compression effect.  

This paper illustrates the specific coding process of Huffman coding through examples. Input: 

known n=5, weight set W={5,6,2,9,7}.  

Huffman coding process start with arranging source symbols in descending order by weight, Then 

add the two symbol weights with the lowest weight value to form a new weight value, and rearrange 

according to the weight value. As shown in step 1 and step in the Figure 1.  
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Figure 1. The steps of Huffman coding. 

Then, repeat the previous steps until only one weight is left to form a Huffman coding tree. At each 

pair of merged nodes, the source symbol with high probability is represented by code symbol ‘0’, 

while the source symbol with low probability is represented by ‘1’. As shown in Figure 3.  

 

Figure 2. Encode Huffman tree. 
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Finally, the sequence of ‘0’ or ‘1’ on the branch from the root of the Huffman tree to each leaf node is 

recorded, so as to obtain the Huffman code of each symbol [16]. As shown in Table 1.  

Table 1. The result of Huffman coding. 

Symbol Weight code 

A 6 00 

B 7 01 

C 5 100 

D 2 101 

E 9 11 

3.1.2.  Research on the error resiliency performance of Huffman Coding 

3.1.2.1. Research status of error resiliency in Huffman coding. Huffman coding is a heterologous 

header code whose correctly transmitted code stream can only be split uniquely [17]. When the bit 

error occurs, the code segment with bit error and the following code words will have a decoding error. 

However, due to the unique translatability of Huffman coding, after a few bits, the code-word will be 

properly re-divided and thus correctly decoded. In other words, Huffman coding does not spread 

transmission errors. However, for adaptive Huffman coding, when the error occurs, the update of the 

Huffman codebook at the decoding end may be affected, thus affecting the correct decoding.  

Nowadays, there are many pieces of research on the error resistance of Huffman coding. A typical 

error resistance method, reversible variable length code (RVLCS), is introduced here. The basic idea 

of reversible variable length codes is that they can be decoded in both forward and reverse directions. 

Once there is a bit error, even if they jump to the next resynchronization mark in the code stream, 

reversible variable length codes can still decode the damaged part of the code stream to limit the 

influence of bit error [18]. For example, Jiangtao Wen and John D. Varasenor introduced a coding 

scheme that replaces each Golomb-Rice code’s prefixes that begin and ends with ‘1’ and the rest of 

the prefix is ‘0’. When the prefix length is 1, use 0 to replace it [19]. The suffix and length assignment 

of RVLCs codes and Golomb-Rice codes are consistent.  

3.1.2.2. Bidirectional decodable streams of prefix code-words. This paper introduces a bidirectional 

decoding method for variable length code (VLC) streams [20]. This method can find the bit error in 

the code stream, and the coding efficiency is good.  

A. Encoder 

Fig. 2 shows the block diagram of the encoder. Divide Symbol S(n) into several groups and denote 

by B(n), as shown in Formula (1).  

The code-word of each code group in B(n) is flipped and denoted by B‘(n).  

B=B(1)|B(2)…|B(N) 
=b1(1)|b2(1)|b3(1)|…|b1(n)|b2(n)|…|bl(N)-1(N)|bl(N)(N) (1) 

The code-word of each code group in B(n) is flipped and denoted by B‘(n).  

B‘(n)=bl(n)(n)|bl(n)-1(n)|…|b2(n)|b1(n) (2) 
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As shown in the encoder block diagram, add 0 of L length after B(n), and add 0 of L length before 

B‘(n), and perform bit by bit XOR operation on the two groups of code streams to obtain C, as shown 

in Formula (4).  

C=(B(1)|B(2)|…|B(N)|0|…|0) ⊕ (0|…|0|B‘(1)|B‘(2)|…|B‘(N)) (3) 

Since it is bidirectional decoding, the offset needs to meet: 

L≥lmax= max
n

l(n) (4) 

 

Figure 3. Block diagram of the reversible length decoder.  

B. Decoding in forward direction 

Figure 3 shows the block diagram of the decoder. The output of the forward decoder is as follows: 

(B(n)000…00)=C⊕ (000..00B‘(n)) (5) 

It can be seen from the above equation, that the last L bits of B′ are the same as the last L bits of C. 

The last L bits of the forward decoding stream are all 0. So the last L bits of C are redundant for 

decoding in the forward direction. Synchronization can be checked according to these properties. If the 

last L bits of decoding is not all 0, it means that synchronization has been lost and bit errors has 

occurred.  

 

Figure 4. Block diagram of the reversible length decoder.  

C. Decoding in Reverse Direction 

The same is shown in Figure 3. We can first translate the last code group of B‘ by the character that 

the last L bits of C and B‘ are the same. Since each code group of B′ is the flip of each code group of B, 
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and we know the length of L, we can obtain the code stream B. This decoding process continues until a 

bit error or the beginning of stream C is encountered.  

3.1.2.3. Experimental analysis. This paper uses experiments to verify the correctness of the method. 

Use Huffman code to encode these characters, flip them according to the principle of bidirectional 

decodable streams of prefix code-word, and Table 1 is obtained.  

Table 2. Symbol code table. 

Symbol Huffman code Flipped code Probability 

$ 00 00 8. 0/30. 0 

i 10 01 6. 0/30. 0 

h 010 010 5. 0/30. 0 

s 011 110 5. 0/30. 0 

t 111 111 4. 0/30. 0 

a 110 011 2. 0/30. 0 

The resulting Huffman code is B(n), and the code stream after flipping is B‘(n). Then the operation of 

equation (4) is carried out by attaching L-length zeros after B(n) and L-length zeros before B‘(n), the 

resulting two sets of code streams are subjected to bit-by-bit XOR operations. The process is shown in 

Figure 5.  
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Figure 5. The decoding process of the experiment. 

According to the principle of forward decoding and the properties of XOR operation, the transmitted 

bitstream obtained after XOR can be changed into the original bitstream. This indicates that this 

encoding method can get the correct bit stream.  

If a bit error occurs, assume that the error stream is as follows: 

1110101001100100111101011111010100001110100010000111101110000111011010001111100

011 

In comparing the decoder with the code table, an error is reported if the decoded code does not 

appear in the table. There is no 11 in the code table, but the decoder will consider it a prefix to the 

symbol A, translate 110 to A, 10 to I, then translate 111 to T, 110 to A, 10 to I, and continue until the 

whole code-word has been translated. The trailing 6 bits of decoding is not all 0, which means that 

synchronization has been lost and bit errors has occurred.This indicates that this encoding method can 

detect the bit error.  

3.2. Arithmetic coding 

Like Huffman coding, Arithmetic coding is also a lossless compression coding and entropy coding. As 

an efficient data compression method, Arithmetic coding is widely used in many fields, such as text, 

image,audio and so on. It is one of the most efficient statistical entropy coding methods so far.  

3.2.1.  Basic principle. The basic principle of Arithmetic coding is that the encoded message can be 

represented as an Interval between the real numbers 0 and 1. The longer the message, the smaller the 

encoded message is, and the more bits are required to represent that interval. This paper shows the 

basic principle of arithmetic coding through examples.  

Set the input source sequence as: 

u=(u1,u2,…,uL),ul∈ {0,1} (7) 
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As shown in the figure below, initially, The interval length is [0,1). It is divided by F(1) into two 

intervals:[0,F(1))  and [F(1),1) . The width of the two intervals is W(0)=P(0)  and W(1)=P(1) , 

respectively, corresponding to the source symbols 0 and 1. Suppose the first source symbol is 0, and 

the sequence falls into the interval [0,F(1)). Suppose the second source symbol is 1, then the sequence 

falls into the interval [F(0)+W(0)P(0),F(1)). Divide the above interval into two intervals according 

to probability, the width is P(010) and P(011) respectively, and the division line of the interval is 

F(01)+W(01)P(0).  

 

Figure 6. The process of dividing intervals by arithmetic coding. 

By analogy, the following recurrence relations can be obtained: 

F(ui+1)=F(ui)+P(ui)F(ui+1) (8) 

W(ui+1)=P(ui+1)=P(ui)P(ui+1) (9) 

The corresponding interval of the final sequence u is [F(u),F(u)+P(u)). Take any value of this 

interval to get the result of arithmetic coding.  

3.2.2.  Research on the error resiliency performance of Arithmetic coding. When used with a suitable 

source model, Arithmetic coding for data compression has been widely accepted as the right method 

for optimum compression [21]. However, Arithmetic coding is very sensitive to errors [22]. The 

transmission error of a codeword will affect the decoding of all subsequent codewords, and the error 

propagation is very serious. The spread of errors is very serious. Therefore, it is very important to 

study the error resiliency performance of Arithmetic coding.  

In order to improve the error resiliency ability of Arithmetic coding, it is a good method to increase 

redundant data to improve the error detection and correction capability of coding. Source decoding can 

recover the source symbol according to the compiled binary code. The algorithm uses the automatic 

synchronization of Arithmetic coding, the knowledge of source statistics and some added redundancy 

to realize error detection and correction [23].  

For example, Boyd et al. [24]proposed two methods to increase redundancy. The first is 

introducing redundancy by adjusting the coding space so that the encoder never uses some parts. The 

error will be detected when the number defined by the received encoded string enters the parts that are 

never used. We call the certain proportion of the current coding interval reduced reduction factor. The 

reduction factor is used to control redundancy. The second approach is to use a model with two 

symbols. Encode one of them periodically. When the other is ever decoded, an error occurs.  

Chou and Ramchandran [25]placed forbidden symbols to unused code intervals. Then performed 

Arithmetic coding based on expanded source alphabets. If the forbidden symbol is decoded, there is an 

error in the transmission.  
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3.2.3.  Comprehensive error detection for Arithmetic coding. The previous paper introduced Boyd’s 

error detection method by controlling redundancy by controlling reduction factor. Let’s illustrate this 

approach in detail with an example. This is shown in Figure 5. When the code point falls into the 

interval (Ln,Ln
‘ ), the interval value is multiplied by a reduction factor R (R between 0 and 1) so that 

the code point still falls into (Ln,Lm), Lm=Ln+(Ln
‘ -Ln)×R. The corresponding interval of the code 

point is reduced, and the interval (Lm,Ln
‘ )  becomes redundant. As the coding continues, the 

redundancy grows. When a bit error occurs during transmission, if a redundant value is transmitted, it 

indicates a bit error. The smaller the value of R, the faster the redundancy increases and the stronger 

the error detection performance.  

 

Figure 7. Schematic diagram of comprehensive error detection coding. 

Then select the value of the reduction factor. It can be seen from the above that the growth speed of 

redundancy and the error detection speed is determined by the reduction factor. First, consider how 

much redundancy increases by increasing the interval in terms of R for each bit. If the current interval 

is of length a, the number of bits to be supplied is I(a)=-log2(a). When the interval is reduced, the 

number of bits to be provided is I(Ra)=I(R)+I(a).  

4. Comparison of compression performance between Huffman coding and Arithmetic coding 

4.1. Compression performance of Huffman coding 

Theoretically, Huffman coding can achieve the best compression effect. However, the actual 

compression effect often lags behind the theoretical value. This is because information about the 

Huffman tree must also be stored simultaneously when storing compressed files. This will affect the 

compression effect. Generally speaking, the impact of the Huffman tree is greater for smaller files and 

smaller for larger files. At the same time, the compression efficiency of Huffman coding is different 

for different types of files. The following table shows the results of compression experiments on some 

files [23].  

Table 3. Comparison of compression effects of Huffman coding.  

S/N File type 

Source 

file 

size(K) 

Compressed 

file 

Compression 

efficiency 

1 

Bitmap Picture(bmp) 

1288 775 42 

2 1537 571 64 

3 2252 1219 48 

4 2305 1351 41. 4 

5 

Text file(txt) 

0. 256 0. 045 83 

6 3. 416 1. 937 44 

7 9. 487 6. 016 37 

8 17 14 18 

9 40 33 19 

10 155 100 36 

11 218 145 35 

12 413 303 29 
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13 
Text file(txt) 

653 442 34 

14 1353 799 43 

15 

Audio files(wav) 

18 11 40 

16 55 48 15 

17 95 75 23 

18 169 142 18 

19 336 290 16 

20 

Executable File(exe) 

27 16 44 

21 40 28 32 

22 60 44. 3 28 

23 389 381 5 

24 857 820 7 

It can be seen from the experimental results in Table 3 that Huffman coding has a good compression 

effect on bmp files, txt files, wav files, and exe files, and the larger the file, the better the effect.  

4.2. Compression performance of Arithmetic coding 

Table 4 [23]shows the experimental results of Arithmetic coding for compressing different types of 

files. It can be seen that the compression effect of Arithmetic coding is different for different file types. 

Arithmetic coding has a better compression effect on bmp files, txt files, wav files, and exe files, and 

the larger the file, the better the effect.  

Table 4. Comparison of compression effects of Arithmetic coding 

S/N File type 

Source 

file 

size(K) 

Compressed 

file 

Compression 

efficiency 

1 

Bitmap Picture(bmp) 

1288 88 34 

2 1537 680 57 

3 2252 1444 38 

4 2305 1446 37. 3 

5 

Text file(txt) 

0. 256 0. 037 86 

6 3. 416 1. 937 44 

7 9. 486 6. 032 37 

8 17 14 19 

9 40 33 19 

10 155 100 36 

11 218 148 34 

12 413 303 29 

13 653 447 34 

14 1353 843 40 

15 

Audio files(wav) 

18 11 41 

16 55 48 15 

17 95 76 23 

18 169 142 18 
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Table 4. (continue) 

S/N File type 

Source 

file 

size(K) 

Compressed 

file 

Compression 

efficiency 

19  336 289 16 

20 

Executable File(exe) 

27 16 42 

21 40 28 31 

22 60 45 27 

23 389 381 2 

24 857 840 5 

4.3. Comparison of two codes 

Huffman coding is a special case of arithmetic coding in essence. But the problem of Huffman coding 

is that the compression precision is integer bit, while the Arithmetic coding can achieve the 

compression precision of decimal bit.  

Arithmetic coding is more complex to implement, and the compression efficiency is slightly better 

than that of Huffman. Huffman coding has low implementation complexity (less overhead), and its 

compression efficiency is slightly lower than that of Arithmetic coding. The common industry practice 

is optimizing the coding algorithm based on the current Huffman coding to reduce the cost.  

The common applications of Huffman coding are JPEG compression coding and AAC, and 

Arithmetic coding is mostly used in LC3. Table 5 shows the comparison between Hoffman coding and 

arithmetic coding. 

Table 5. Comparison between Huffman coding and Arithmetic coding. 

 Huffman coding Arithmetic coding 

Compression 

accuracy 

Integer bit Decimal bit 

Compression 

efficiency 

Relatively low efficiency Relatively high efficiency 

Implementation 

complexity 

Low complexity High complexity 

Common 

Applications 

JEPG,AAC LC3 

5. Conclusion 

With the development of communication and multimedia technology, a large number of data resources 

put forward higher requirements for compression technology. Data compression technology uses the 

least amount of data to represent the signal sent by the source to reduce the occupied storage space and 

improve information transmission rate. The key technology of data compression is excellent coding 

technology. The capacity to resist channel error is an significant index to reflect the performance of 

data compression coding. For example, Arithmetic coding with high compression performance has 

high sensitivity to bit error, which seriously hinders the wide application of Arithmetic coding in 
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wireless multimedia. The quality of wireless multimedia communication can be effectively improved 

by using certain methods to improve its error-resistant ability. Therefore, it is of great importance to 

study the error resiliency ability of lossless compression algorithms in common use in communication.  

In this paper, the author introduces lossless data compression technology and discusses its basic 

principle and performance index. The common lossless compression codes are studied, and the main 

object is their basic principles and error resiliency performance. Huffman coding is the best lossless 

coding method from the perspective of information entropy. And because of its unique translatability, 

it can quickly recover from errors. However, the error of adaptive Huffman coding will affect the 

update of the Huffman coding codebook at the decoding end. This paper introduces the bidirectional 

decoder with prefixes as a method to solve the bit error. Arithmetic coding has better compression 

efficiency, but it is very sensitive to error and error propagation is serious. To improve the error 

resiliency ability of Arithmetic coding, the error detection and correction ability of Arithmetic coding 

can be improved by adding redundant data.  

The next direction of research can be put in the study of lossless compression algorithms in image 

compression, video compression, and other aspects of the application. In addition, there are still many 

defects and deficiencies in the research on error resiliency of lossless coding. There should be different 

characteristics of error resiliency in different applications, which is worthy of further research and 

practice.  
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