
Overview of definition, evaluation, and algorithms of

serendipity in recommender systems

Ning Sun

University of Alberta, Edmonton, Canada, T6G 2R3

ning2@ualberta.ca

Abstract. Over time, recommendation systems are playing an important role in an increasingly

wide range of areas, such as paper retrieval sites that can recommend papers or books to users,

and shopping sites that can recommend products to users. With the development of

recommendation systems, there are many different metrics to measure a good recommendation

system, including serendipity. This paper summarizes the definition of serendipity, a review of

the metrics for measuring serendipity, and several major serendipity-oriented algorithms and

presents conjectures for future research on serendipity. Through the research of some papers, for

how to delimit and evaluate recommender systems, experts have mostly focused on the

unexpected, and most of them use and optimize collaborative filtering algorithms to achieve and

improve serendipity.

Keywords: recommender system, serendipity, systematic literature review, content-based

filtering, collaborative filtering, greedy algorithm.

1. Introduction

A good recommendation system has many indicators, one of which is relatively important is user

satisfaction and accuracy rate. However, if the system focuses too much on the accuracy of

recommendations, or recommends a large number of popular items, it will make users bored [1].

According to Kotkov’s definition, when a user is frequently recommended items that match his interests

or personal information or when always recommended popular items, they are less satisfied and get

bored, which is the problem of overspecialization, which can reduce user satisfaction and can result in

the loss of business value of the recommender system [1]. Ziarani et al. argue that argue that novelty

and diversity are two ways to solve overspecialization. However, to make users more satisfied, scientists

started to consider recommending serendipitous items, and serendipity became one of the standard to

evaluate recommended systems [2]. As the recommendation system becomes more and more mature,

serendipity gradually attracts people’s attention, because which effectively increases people’s

satisfaction with the recommendation system, and this paper asks the following questions: 1. what is the

definition of serendipity; 2. how to evaluate serendipity; 3. how to implement serendipity, and what are

the popular algorithms. This paper will review scientists’ definition of recommender systems, especially

serendipity; 3. Review the criteria for evaluating serendipity; 4. Review the algorithms for serendipity.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

460

mailto:ning2@ualberta.ca

2. Definition of serendipity

The importance of serendipity was first demonstrated and summarized by Toms in 2000 [3]. In addition,

later scientists gradually refined the definition of serendipity. KAMINSKAS and BRIDGE summarized

the literature over the years and came up with 3 elements: 1. The classifier does not determine the

relevance of the item to the user’s preferences; 2. Whether the item covers all areas of interest to the

user; 3. Whether the item has the intersection of the features of the two input items [4].

Yaqub classifies serendipity into: Walpolian, Mertonian, Bushian, and Stepha. Walpolian is

something that the explorer finds accidentally. Mertonian is the explorer who solves the problem by an

accidental method. Bushian is similar to Mertonian, but Bushian is the accidental discovery of the

answer [5]. The accidental invention of saccharin mentioned by the author in the paper is Bushian Stepha,

on the other hand, discovered solutions and problems by accident, such as what Yaqub mentioned in his

paper, in which the inventor first discovered non-shattering flask, and then learned about the seriousness

of the injuries caused by flying glass, so he subsequently invented safety glass.

According to Kotkov’s summary, contingency items have the following three keywords for users:

relevant, novel, and unexpected [6]. According to his summary, an item is serendipity to the user if the

following three conditions are met: 1. The user has never touched the item; 2. The user has access to the

item but has never consumed or learned about it; 3. The user does not have the impression that he has

consumed or learned about the item. Some controversy about the definition of serendipity. The biggest

point of contention is relevance. Some scientists believe that the definition of serendipity is novelty and

unexpected , but most scientists believe that relevance and unexpected is serendipity, and some scientists

believe that serendipity has all three characteristics at the same time [1] [2][7].

3. Serendipity assessment methods and criteria

Serendipity can be assessed in many ways. First of all, the most direct method is user study, which can

get the most subjective and direct feelings of users by conducting a documented survey, and it is less

risky. The following conclusions were drawn: 1. All unexpectedness and novelty expand users’

preferences and make them like other kinds of items. In Kotkov’s prediction, he found that accidental

films are more liked than non-accidental films, which indicates to some extent that users are still

interested in serendipitous items [6]. However, user study also has some disadvantages. For example, it

is more expensive to recruit test users and difficult to organize users to be surveyed on a large scale.

Moreover, double-blind experiments are difficult to implement and reflect the real environment. The

second method is the calculation by formula. The most common formula is:

|𝑅𝑢𝑛𝑒𝑥𝑝|∩|𝑅𝑢𝑠𝑒𝑓𝑢𝑙|

|𝑅|
 (1)

But scientists have their own criteria, and Kotkov summarizes the measure of unexpectedness:

𝑃𝑀𝐼(𝑖, 𝑗) = −𝑙𝑜𝑔2
𝑝(𝑖,𝑗)

𝑝(𝑖)𝑝(𝑗)
/𝑙𝑜𝑔2𝑝(𝑖, 𝑗) (2)

where P(i) is the likelihood that the user will rate item i, what is the probability that the user will rate

item i. p(i, j) is the likelihood that the user will rate item i and item j together. PMI(i, j) ranges from 1 to

-1. When PMI is 1, it means that the user always rates i and j together, and when PMI is -1, it means that

the user never rates i and j together. This formula calculates the level of similarity between two items (i

and j). If the result tends to -1, the less similar the two items are, and if it tends to 1, the more similar

the two items are. Two variants are extended [8]:

𝑢𝑛𝑒𝑥𝑝𝑘𝑎𝑚
𝑐𝑜−𝑜𝑐𝑐1(𝑖, 𝑢) = 𝑚𝑎𝑥𝑃𝑀𝐼(𝑖, 𝑗), 𝑗 ∈ 𝐼𝑢 (3)

𝑢𝑛𝑒𝑥𝑝𝑘𝑎𝑚
𝑐𝑜−𝑜𝑐𝑐2(𝑖, 𝑢) =

1

|𝐼𝑢|
∑ 𝑃𝑀𝐼(𝑖, 𝑗)𝑗∈𝐼𝑢

 (4)

Kotkov also summarized the complete criteria by examining Murakami’s serendipity metric algorithm:

𝑆𝑒𝑟𝑚𝑢𝑟(𝑢) = ∑ max(𝑃𝑟𝑢(𝑖) − 𝑃𝑟𝑖𝑚𝑢(𝑖), 0) ∙ 𝑟𝑒𝑙𝑢(𝑖)𝑖∈𝑅𝑢
 (5)

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

461

Where Ru is the list of recommendations; Pr_u is the confidence primitive models that recommend

items to users by examined models. Prim_u is the confidence primitive models that recommend items

to users by primitive models. rel _u (i) is 1 if item i is related to user u, 0 otherwise. Later, through

modifications by Ge and Adamopoulos et al., this metric formula became:

𝑠𝑒𝑟𝑎𝑑(𝑢) =
1

|𝑅𝑢|
∑ 𝑟𝑒𝑙𝑢(𝑖)𝑖∈(𝑅𝑢\(𝐸𝑢∪𝑃𝑀)) (6)

Where i is item. PM is the set of items recommended by the initial recommender system model, and

Eu is the item i that belongs to the interests of user u. If item i is related to user u, it is 1, if not, it is 0.

Chantanurak et al. They evaluate serendipity is assessed by counting the ratio of the number of useful

recommendations of the recommender system to the number of recommended items that users are

surprised by [2]:

𝑆𝑒𝑟@𝑁 =
#𝑢𝑠𝑒𝑓𝑢𝑙

#𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 (7)

where #useful is the number of items for which the user expressed a preference or interest in the

recommended item. The meaning of #unexpected is the number of items that the user was surprised by

the recommended item.

Niu and Abbas proposed a framework to calculate serendipity scores:

𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝑑) = 1 − 𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦(𝑑) ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝑑) (8)

Where d is one of the items recommended by the whole recommendation system. The core of this

framework is Curiosity Model, and the purpose of this model is to find the parameters. θ and δ, where θ

represents the number of curiosity parameters and the latter represents the type, so as to find the

maximum value of curiosity:

(𝜃′, 𝛿′) = arg max (𝑐𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦(𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝜃, 𝛿)) (9)

After obtaining the curiosity model, they obtained the following equation:

𝑠𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦(𝑑) = 𝑣𝑎𝑙𝑢𝑒(𝑑) − 𝑎𝑏𝑠(𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝑑) − 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝜃′, 𝛿′)) (10)

Where d is the item with the highest serendipity score [9].

4. Overview of serendipity methods and algorithm integration

The algorithms of recommendation systems have been developed for many years, and one of the most

common and classic algorithms should be the collaborative filtering algorithm. The basic principle is

based on the data of user’s historical behavior.

4.1. User-based collaborative filtering algorithm

Collaborative filtering algorithms mainly include two types of algorithms: user-based collaborative

filtering algorithm and item-based collaborative filtering algorithm. Among them, the user-based

collaborative filtering algorithm is to recommend items to users with similar interests. This algorithm is

not suitable for improving the serendipity metric of a recommender system, because it is difficult for

two users with the same interests to find items with Serendipity, since they may be familiar with both in

this area. But Afridi studied how to make users control the serendipity of the recommendation system,

and it used the recommendation slider to allow users to achieve control over the desired serendipity and

accuracy of the recommendation system. Users can control the item list to reorder and then generate a

list of unexpected recommendations. In this process, Afridi uses a collaborative filtering algorithm to

provide recommendations to the user. He performed MANOVA test on user-accepted data and got the

result that enhanced user control helps to improve the problem of overspecialization of recommendation

systems and can enhance the chance [10].

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

462

4.2. Item-based collaborative filtering algorithm

The basic idea of item-based collaborative filtering algorithm is to pre-calculate the similarity between

items based on the historical preference data of all users, and then recommend items similar to the user’s

favorite item to the user. The similarity is generally calculated by the cosine similarity method. Matrix

Factorization, which means decomposing the matrix into the product of several matrices, can decompose

the collaborative filtering co-occurrence matrix into more matrices to discover more invisible features.

According to the experiments done by Kotkov, they chose a music-related domain to collect two datasets,

the Vkontakte dataset and the Last.fm dataset. First, using ItemCF, the items were sorted by similarity

to the items selected by users. Each recording (item) is represented as a vector in a multi-dimensional

feature space, and FEATURE is the user’s rating of the item. He refers to Vkontakte’s dataset as VK, so

the recording of VK is represented as:

𝑖𝑣𝑘 = (𝑢1,𝑖
𝑣𝑘 , 𝑢2,𝑖

𝑣𝑘, … , 𝑢𝑛,𝑖
𝑣𝑘) (11)

The elements in each recording are denoted as:

𝑢𝑘,𝑖
𝑣𝑘 ∈ {0,1} 𝑓𝑜𝑟 𝑘 = 1, … , ||𝑈|| (12)

Where k is the user and U is the set of users, which means that each element has two values, 0 or 1.

So, if Vk user k selects i^vk, the element u_(k,i)^vk in it becomes 1, or 0 if it is not selected and they

also use a dataset Last.fm, which becomes FM, and merge the users of FM into vk’s recording, Kotkovde

the two datasets would then become:

𝑖𝑣𝑘𝑓𝑚 = (𝑢1,𝑖
𝑣𝑘, 𝑢2,𝑖

𝑣𝑘 , … , 𝑢𝑛,𝑖
𝑣𝑘 , 𝑢1,𝑖

𝑓𝑚
, 𝑢2,𝑖

𝑓𝑚
, … , 𝑢𝑛,𝑖

𝑓𝑚
) (13)

When the user has finished selecting, the result of the user’s selection can be clearly observed by 1

and 0. Then, the collaborative filtering algorithm sorts the other recordings according to the one selected

by users, and the rule of sorting is the similarity of the other recordings with the one selected by users.

Kotkov et al. chose conditional probability as a similarity measure, and the formula is as follows:

𝑝(𝑖, 𝑗) =
𝐹𝑟𝑒𝑞(𝑖 ⋀ 𝑗)

𝐹𝑟𝑒𝑞(𝑖)∙𝐹𝑟𝑒𝑞(𝑗)𝛼 (14)

where Freq(i) represents how many users have selected item i. Similarly, Freq(j) represents how many

users have selected item j. Freq(i∧j) represents how many users select item i and item j at the same

time. The role of α is to reduce the similarity of popular items. Kotkov chose α to be 1 in his experiments.

In this experiment, there are more FM users than Vk users. Kotkov devised this rule to compare

therecording and derive the value of similarity:

𝑠𝑖𝑚(𝑖, 𝑗) = {

𝑝(𝑖𝑣𝑘, 𝑗𝑣𝑘), ∃𝑖𝑣𝑘 ∧ ∃𝑗𝑣𝑘 ∧ (∄𝑖𝑓𝑚 ∨ ∄𝑗𝑓𝑚)

𝑝(𝑖𝑓𝑚, 𝑗𝑓𝑚), ∃𝑖𝑓𝑚 ∧ ∃𝑗𝑓𝑚 ∧ (∄𝑖𝑣𝑘 ∨ ∄𝑗𝑣𝑘)

𝑝(𝑖𝑣𝑘𝑓𝑚, 𝑗𝑣𝑘𝑓𝑚), ∃𝑖𝑣𝑘 ∧ ∃𝑗𝑣𝑘 ∧ ∃𝑖𝑓𝑚 ∧ ∃𝑗𝑓𝑚

 (15)

Then, the sum of similarity was obtained:

𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) = ∑ 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝐼𝑢
 (16)

Where I_u is the set of items selected by user u. Kotkov’s algorithm uses this score to sort [11].

4.3. Content-based recommender systems

Sutter et al. Content-based recommender systems were outlined in the paper, where content-based

recommender systems use two sets of metadata, one from a set of users Ua, and a set of data from a set

of items I (represented as keywords) to extract current data. There are items to make predictions about

the target user’s items [12].

Term Frequency Inverse Document Frequency (TF-IDF) is the most commonly used term weighting

scheme, Lops et al. explain the following in their paper:

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

463

• Rare words are not less relevant than common words (IDF assumption);

• Multiple occurrences of a word in a document are not less relevant than single occurrences (TF

assumption);

• Long documents are preferred over short documents (normalization assumption) (12).

Kotkov also did a Content-Based Filtering method in the same article. This method is based on item

attributes to make recommendations, such as tags of items, etc. In Kotkov’s experiments, this attribute

is VK - FM artists and FM tags. First, frequency inverse document frequency (TF-IDF) is used. There

are the following two components:

𝑡𝑓𝑖𝑑𝑓𝑎𝑡𝑡𝑟,𝑖 = 𝑡𝑓𝑎𝑡𝑡𝑟,𝑖 ∙ 𝑖𝑑𝑓𝑎𝑡𝑡𝑟 (17)

Where attr is attribute; Where 𝑡𝑓𝑎𝑡𝑡𝑟,𝑖 is the frequency of the attribute of item i; 𝑖𝑑𝑓𝑎𝑡𝑡𝑟 is the

inverse frequency of the attribute, also called inverse document frequency.

In Kotkov’s experiment, each FM artist corresponds to a particular VK artist:

𝑡𝑓𝑧𝑡𝑡𝑟,𝑖 =
𝑛𝑎𝑡𝑡𝑟,𝑖

𝑛𝑖
 (18)

where ni represents the number of attributes of item i, and nattr,i represents the proportion of this

attribute in the attributes of item i. In Kotkov’s example, nattr,i = 1 for each item, and ni varies from

item to item. The inverse document frequency and the number of items with attributes in the dataset are

related.

𝑖𝑑𝑓𝑎𝑡𝑡𝑟 = 𝑙𝑛
||𝐼||

||𝐼𝑎𝑡𝑡𝑟||
 (19)

Where I is the set of all items; Iattr is the set of items with attributes, and inverse document frequency

is chosen. The reason is the difference between rare attributes and popular attributes. Then, Kotkov

integrated the FM tags in order to consolidate the data into:

𝑖𝑎𝑡 = (𝑎1,𝑖, 𝑎2,𝑖, … , 𝑎𝑑,𝑖 , 𝑡1,𝑖, 𝑡2,𝑖, … , 𝑡𝑞,𝑖) (20)

where 𝑡𝑘,𝑖 is TF IDF weight;

The user vector is:

𝑢𝑎𝑡 = (𝑎1,𝑢, 𝑎2,𝑢, … , 𝑎𝑑,𝑢, 𝑡1,𝑢, 𝑡2,𝑢, … , 𝑡𝑞,𝑢) (21)

Where 𝑡𝑘,𝑢 is how many recordings with tag tk are selected by the user.

Kotkov uses cosine similarity to compare similarity:

cos(𝑢, 𝑖) =
𝑢∙𝑖

||𝑢||∙||𝑖||
 (22)

Where u is the user vector and i is the item vector.

Kotkov’s experimental results show that for collaborative and content-based filtering algorithms,

serendipity increases only when items in source and target domains overlap, and the more items overlap,

the higher the accuracy of the algorithm [13].

Also, kotkov describes the chance-oriented greedy algorithm. This algorithm describes an accuracy-

oriented algorithm rating first into a list that generates the list 𝑅𝑆𝑢(𝑛) with accuracy as a criterion, and

then iterates with SOG from 𝑅𝑆 𝑢𝑢(𝑛) to select items to generate a list Res with diversity as a criterion.

The SOG generates a candidate set during the iteration which contains the items in Res and the highest

scoring candidates. So the order of Res will be different from 𝑅𝑆𝑢(𝑛) for the purpose of serendipity.

Kotkov also proposes to define the chance in terms of score and defines the parameters of it as follows:

𝑠𝑐𝑜𝑟𝑒𝑢𝑖𝐵 = 𝑎𝑟𝑒𝑙 ∙ 𝑟̂𝑢𝑖 + 𝛼𝑑𝑖𝑣 ∙ 𝑑𝑖𝑣𝑖𝐵 + 𝛼𝑝𝑟𝑜𝑓 ∙ 𝑝𝑟𝑜𝑓𝑢𝑖 + 𝑎𝑢𝑛𝑝𝑜𝑝 ∙ 𝑢𝑛𝑝𝑜𝑝𝑖 (23)

Where a is a parameter; the table below represents the different parameters; rel represents relevance;

div represents diversity; prof represents how dissimilar items are from user profiles, and unpop

represents unpopular parameters.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

464

𝒓̂𝒖𝒊is the only evaluation of item i by user u, 𝒅𝒊𝒗𝒊𝑩represents the difference between item i and dataset

B, 𝒑𝒓𝒐𝒇𝒖𝒊 i and user’s usual consumption, and 𝒖𝒏𝒑𝒐𝒑𝒊 represents the degree of unpopularity of item

i:

𝑑𝑖𝑣𝑖𝐵 =
1

||𝐵||
∑ 1 − 𝑠𝑖𝑚𝑖,𝑗𝑗∈𝐵 (24)

Where 𝒔𝒊𝒎𝒊,𝒋 is a similarity measure in the range of [0,1];

𝒑𝒓𝒐𝒇𝒖𝒊 and 𝒖𝒏𝒑𝒐𝒑𝒊 are respectively calculated by the following equations:

𝒑𝒓𝒐𝒇𝒖𝒊 =
𝟏

||𝑰𝒖||
∑ 𝟏 − 𝒔𝒊𝒎𝒊,𝒋𝒋∈𝑰𝒖

 (25)

𝒖𝒏𝒑𝒐𝒑𝒊 =
||𝑼𝒊||

||𝑼||
 (26)

U is a set of users for a specific recommender system at a specific time [1].

5. Discussion

This paper summarizes the indicator serendipity of the recommender system and demonstrates that

scientists have made rapid progress in serendipity research results this year. However, there seem to be

a lot of points for development. The author personally think that the recommendation system serves the

user, and the user’s satisfaction is the fundamental purpose pursued by the recommendation system. So

the paper thinks the future trend will be that the serendipity of recommendation systems will gradually

be user-centered and adapted to different users for the recommendation. Secondly, in Kotov’s article,

the parameter is mentioned as personal information about the user, but he did not conduct a study on

this aspect. While Nguyen et al. studied the demand for users’ individual personality traits on

recommendation systems, they surveyed 1800 users. They rated two groups of movie lists to users, one

group containing 12 movies and one group containing 15 recently rated movies, using cosine similarity

to calculate:

𝑠𝑒𝑟𝑒𝑛𝑑𝑖𝑝𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 =
1

12×15
∑ ∑ 𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖 , 𝑟𝑗)𝑟𝑗∈𝑅𝑚𝑖∈𝑆 (27)

Nguyen concluded that most high-conscientious users prefer low-serendipity recommendations,

while most low-conscientious users prefer high-serendipity recommendations [14]. If the results of this

study can be combined with Kotkov’s greedy algorithm, it may increase user satisfaction, which could

greatly improve recommender systems.

6. Conclusion

This paper collects and finds the research results of scientists in recent years and draws the following

conclusions. There are many definitions of serendipity, but most of them include the unexpected and

relevance. The evaluation methods are influenced by the definitions, and scientists have their own

criteria. But most of them include unexpected parameters. So, the unexpected is an important indicator

of serendipity. For the algorithms of serendipity, scientists mostly use item-based collaborative filtering

algorithms or content-based recommendation systems. Some scientists also try to improve the

serendipity of recommendation systems by being user-centered. Firstly, the author should put the above

ideas into experiments to verify the specific effects. Secondly, according to Nguyen’s article, users with

different personalities have different needs for serendipity. If users are not interested in the items

recommended by the system by chance but often receive these kinds of recommendations, their

satisfaction with the recommendation system will be greatly reduced. So in the future, people should

also put the research into the combination of serendipity and user satisfaction.

References

[1] Kotkov, D., Veijalainen, J. & Wang, S. (2020). How does serendipity affect diversity in

recommender systems? A serendipity-oriented greedy algorithm. Computing 102, 393–411.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

465

[2] Ziarani, R. J., & Ravanmehr, R. (2021). Serendipity in recommender systems: a systematic

literature review. Journal of Computer Science and Technology, 36(2), 375-396.

[3] Toms, E. G. (2000). Serendipitous Information Retrieval. DELOS Workshop: Information

Seeking, Searching and Querying in Digital Libraries.

[4] Kaminskas, M., & Bridge, D. (2016). Diversity, serendipity, novelty, and coverage: a survey and

empirical analysis of beyond-accuracy objectives in recommender systems. ACM

Transactions on Interactive Intelligent Systems (TiiS), 7(1), 1-42.

[5] Kotkov, D., Konstan, J. A., Zhao, Q., & Veijalainen, J. (2018, April). Investigating serendipity in

recommender systems based on real user feedback. In Proceedings of the 33rd annual acm

symposium on applied computing (pp. 1341-1350).

[6] Zheng, Q., Chan, C. K., & Ip, H. H. (2015, July). An unexpectedness-augmented utility model

for making serendipitous recommendation. In Industrial conference on data mining(pp. 216-

230). Springer, Cham.

[7] Kotkov, D., Wang, S., & Veijalainen, J. (2016). A survey of serendipity in recommender

systems. Knowledge-Based Systems, 111, 180-192.

[8] Niu, X., & Abbas, F. (2017, July). A framework for computational serendipity. In Adjunct

Publication of the 25th Conference on User Modeling, Adaptation and Personalization (pp.

360-363).

[9] Afridi, A. H. (2018). User control and serendipitous recommendations in learning environments.

Procedia computer science, 130, 214-221.

[10] Lops, P., Gemmis, M. D., & Semeraro, G. (2011). Content-based recommender systems: State of

the art and trends. Recommender systems handbook, 73-105.

[11] Saat, Nur Izyan Yasmin, Shahrul Azman Mohd Noah and Masnizah Mohd. “Towards Serendipity

for Content–Based Recommender Systems.” International Journal on Advanced Science,

Engineering and Information Technology (2018): n. pag.

[12] Kotkov, D., Wang, S., & Veijalainen, J. (2016, April). Improving serendipity and accuracy in

cross-domain recommender systems. In International Conference on Web Information

Systems and Technologies (pp. 105-119). Springer, Cham.

[13] Nguyen, T. T., Maxwell Harper, F., Terveen, L., & Konstan, J. A. (2018). User personality and

user satisfaction with recommender systems. Information Systems Frontiers, 20(6), 1173-1189.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230861

466

