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Abstract: This paper delves into the issue of image noise and its significance in digital image 

processing. It analyzes the sources of noise, its impact on image quality, and its interference 

with subsequent processing tasks. Traditional denoising algorithms, such as mean filtering, 

median filtering, and Gaussian filtering, have limitations when dealing with specific types of 

noise, particularly in complex noise scenarios where image details are prone to loss. In recent 

years, the rise of deep learning technology has brought new breakthroughs to image denoising. 

Specifically, Stacked Denoising Autoencoders have significantly improved denoising 

effectiveness and image quality by extracting features layer by layer and applying nonlinear 

transformations, enabling the removal of noise while preserving important details and 

structural information in the image. However, the training process of SDAE demands high 

data and computational resources and has a strong dependence on training data, limiting its 

application in scenarios requiring high real-time performance. This study not only provides a 

new technological option for image denoising but also offers a scientific basis for algorithm 

selection and optimization. 
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1. Introduction 

The issue of image noise has consistently occupied a central position in the field of digital image 

processing. As a pivotal factor influencing image quality, noise primarily originates from the 

processes of image acquisition, data transmission, and storage. The presence of image noise not only 

diminishes visual presentation effects and reduces overall quality but also affects the accuracy and 

efficiency of subsequent image processing tasks [1]. In advanced tasks such as image recognition, 

object detection, and image segmentation, noise interference leads to decreased algorithm 

performance, increasing the risk of misjudgments and omissions. Therefore, image denoising has 

become a core aspect of the image processing workflow, crucial for enhancing image quality and 

optimizing the performance of subsequent tasks. 

In recent years, the emergence of artificial intelligence (AI) technology, particularly deep learning, 

has revolutionized the field of image processing. AI technology, with its powerful data processing 

and pattern recognition capabilities, has demonstrated exceptional performance in tasks such as image 

denoising. Traditional denoising methods, such as mean filtering, median filtering, and Gaussian 

filtering, while effective in removing noise, tend to blur image edge information and detailed features 

[2]. In contrast, AI-based denoising methods, such as Convolutional Neural Networks (CNNs) and 
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Generative Adversarial Networks (GANs), by simulating the processing mechanisms of the human 

visual system, can preserve image edge information and detailed features while denoising, 

significantly improving image quality and enhancing the performance of subsequent processing tasks.  

This study delves into the innovative aspects and performance differences of stacked denoising 

techniques, not only facilitating a better understanding of the advantages and limitations of this 

emerging technology but also providing valuable references and guidance for research and 

applications in the field of image denoising. This will contribute to the continuous advancement and 

innovation of image processing technologies, making positive contributions to the development of 

related fields. 

2. Literature Review 

In the field of data processing and analysis, denoising is a crucial task. Noise typically originates from 

various factors such as sensor errors and environmental interferences, which not only degrade data 

quality but may also adversely affect subsequent analysis and modeling [3]. To address this challenge, 

researchers have developed a series of classical denoising algorithms, among which mean filtering, 

median filtering, and Gaussian low-pass filtering are most widely used in practical applications. Mean 

filtering is suitable for removing random noise in images, especially when the noise distribution is 

uniform and the intensity is weak. In fields such as environmental monitoring and digital photography, 

mean filtering is extensively applied to smooth data and enhance image quality. 

Mean filtering is a typical linear filtering algorithm whose basic principle involves replacing each 

pixel value in the original image with its mean value [4]. For the current pixel (x, y) to be processed, 

a template consisting of several neighboring pixels is selected. The mean of all pixels within the 

template is then calculated and assigned to the current pixel (x, y) as its gray value in the processed 

image. Mean filtering reduces noise through smoothing but has the drawback of potentially blurring 

image details. Its mathematical expression is: 

 f
mean

(x,y) =
1

N
∑ f(i, j)(i,j)ϵΩ  (1) 

where f(i, j) is the gray value of the original image at pixel (i, j), Ω is the neighborhood window 

centered at (x, y), and N is the total number of pixels within the window. 

Median filtering is a nonlinear filtering algorithm that achieves denoising by calculating the 

median of the gray values of multiple pixels surrounding a given pixel [5]. Median filtering can 

preserve image edges and details while effectively suppressing noise types such as salt-and-pepper 

noise [6]. Its basic idea is to use the median of gray values instead of gray value variance for image 

denoising, determining the optimal smoothing window size and direction through local statistics and 

analysis. The output of median filtering is: 

 f
Median

(x, y) = Median{f(i, j)|(i, j)ϵΩ} (2) 

where Median denotes the median operation. 

Gaussian low-pass filtering employs the properties of the Gaussian function to perform a 

convolution operation on the image, achieving the purpose of blurring the image and reducing noise 

[7]. The weight distribution of the Gaussian filter conforms to the Gaussian function, with pixels 

farther from the center having smaller weights [8]. By adjusting the standard deviation (σ) of the 

Gaussian function, the degree of smoothing of the filter can be controlled. Gaussian low-pass filtering 

is highly effective in filtering out random noise such as Gaussian noise but also has the issue of 

excessive smoothing leading to loss of image details. 

 f
Gaussian

(x, y) = ∑ f(i, j) ∙(i,j)ϵΩ G(i, j) (3) 
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where G(i, j) is the Gaussian kernel function defined as:  

 G(i, j) =
1

2πσ
2
exp⁡ (−

(i−x)
2
−(j−y)

2

2σ
2

) (4) 

Classical denoising algorithms such as mean filtering, median filtering, and Gaussian low-pass 

filtering have significant advantages in processing specific types of noise but also exhibit some 

common limitations. The main limitation of mean filtering is that it may blur image details, resulting 

in unclear edges. Additionally, for impulsive noise with strong variability, mean filtering is not ideal. 

Although median filtering performs well in removing salt-and-pepper noise, its effectiveness in 

filtering out random noise, such as Gaussian noise is inferior to that of Gaussian low-pass filtering. 

Furthermore, when noise density is high, median filtering may destroy the detailed structure of the 

image. The primary limitation of Gaussian low-pass filtering is that excessive smoothing may lead to 

loss of image details. Moreover, for impulsive noise with strong variability, Gaussian low-pass 

filtering is not effective. Additionally, designing a Gaussian filter requires selecting an appropriate 

standard deviation (σ), which increases algorithm complexity and parameter tuning difficulty. To 

overcome these limitations, researchers have proposed many improved algorithms and new 

technologies. For example, image denoising algorithms based on deep learning achieve significant 

denoising results by training deep neural network models to automatically learn denoising rules. 

Furthermore, combining the advantages of multiple denoising algorithms for combined denoising is 

also one of the current research hotspots. By comprehensively applying the strengths of different 

algorithms, denoising performance can be further enhanced and limitations reduced. Deep learning 

denoising algorithms possess powerful adaptive and feature learning capabilities, enabling them to 

handle complex and high-level noise. In addition, these algorithms can retain more detailed 

information while smoothing images, improving image quality. 

3. Application of Stacked Denoising Techniques in Image Denoising 

3.1. Theoretical Basis and Innovation of Stacked Denoising Autoencoders  

Stacked Denoising Autoencoders (SDAE) constitute a learning model with significant advantages in 

the field of deep learning. They achieve deep feature extraction and efficient representation of 

complex data by skillfully stacking multiple layers of Denoising Autoencoders (DAE). The core 

objective of SDAE is to gradually uncover the intrinsic structure and features of data through layered 

learning and optimization, thereby enhancing the model's generalization ability and the precision of 

feature extraction. Within the framework of SDAE, each layer of DAE plays a crucial role by 

extracting information from noisy input data and attempting to recover the original clean data. This 

process not only aids in removing noise components from the data but also prompts the model to 

learn more robust and effective data features, laying a solid foundation for subsequent tasks such as 

classification, regression, clustering, and more. 

3.2. Stacked Structure and Feature Learning Capability of SDAE 

SDAE constructs a deep network structure by stacking multiple layers of DAE to achieve layered 

feature extraction and deep representation of data. In each layer, the DAE effectively removes noise 

from the input data and learns high-order features of the data [8]. Through multi-layer stacking, SDAE 

can gradually mine deep information in the data, forming more abstract and complex feature 

representations. These feature representations are highly valuable for subsequent classification, 

prediction, or dimensionality reduction tasks, as they not only contain core information of the data 

but also reflect complex relationships and patterns among the data, as shown in Table 1.  
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Table 1: Main Characteristics and Training Process of SDAE 

Item Simplified Description 

SDAE Stacked Denoising Autoencoder for layer-wise feature extraction 

Features Noise removal and high-level feature learning 

Training Pre-training + Fine-tuning 

Pre-training Layer-wise training for feature learning 

Fine-tuning Connecting classifier and optimizing model 

 

The training process of SDAE comprises two main stages: pre-training and fine-tuning. During 

the pre-training stage, SDAE trains each DAE layer by layer. Initially, noisy input data is fed into the 

first DAE to train it to reconstruct the original data from the noisy data. Upon completion of training, 

the first DAE learns the first-layer feature representation of the input data [9]. Subsequently, the 

output of the first DAE (i.e., the encoded features) is used as the input for the second DAE, which is 

similarly trained to reconstruct the feature representation of the previous layer from noisy data. This 

process is repeated, training multiple DAEs in sequence, ultimately forming a stacked structure. Each 

layer of DAE is responsible for removing noise from the input data and extracting higher-level 

features. 

After pre-training all layers, SDAE enters the fine-tuning stage. At this stage, the entire stacked 

denoising autoencoder is connected with a classifier (e.g., Softmax classifier) to form a complete deep 

learning model. Then, labeled data is used to fine-tune the entire model. The goal of fine-tuning is to 

adjust the model parameters by minimizing classification loss, enabling the model to perform better 

on classification tasks. Through fine-tuning, SDAE can further optimize its feature extraction and 

classification capabilities, achieving accurate processing and efficient representation of complex data. 

3.3. Application of Stacked Denoising Techniques in Image Denoising 

Image denoising is a core problem in image processing, aiming to effectively remove noise from 

images while preserving important features and details to the greatest extent possible [10]. Stacked 

Denoising Autoencoders (SDAE), as a deep learning model, exhibit significant advantages in image 

denoising tasks through layered learning of image feature representations. This section will delve into 

the application of SDAE in image denoising and analyze its advantages compared to traditional 

methods. 

SDAE is a deep learning model formed by stacking multiple layers of DAE based on the Denoising 

Autoencoder (DAE). DAE learns robust feature representations of data by adding noise to the input 

data and training the model to recover the original data from the noisy data. SDAE further leverages 

this characteristic by stacking multiple DAEs to gradually extract high-level features of images, 

effectively removing image noise [11]. The structure of SDAE typically includes an input layer, 

multiple hidden layers (each being a DAE), and an output layer. During training, SDAE encodes and 

decodes the input image layer by layer, optimizing model parameters by minimizing reconstruction 

error. As training progresses, SDAE learns the mapping relationship from noisy images to noise-free 

images, thereby achieving image denoising. 

3.4. Specific Applications of SDAE in Image Denoising 

The application of SDAE in image denoising is extensive, encompassing various scenarios requiring 

noise removal from images. Firstly, in medical image processing, SDAE can be used to remove noise 

from medical images, enhancing image clarity and contrast. For instance, in X-ray, CT, and MRI 

images, SDAE can effectively remove noise, enabling doctors to make more accurate diagnoses. 
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Secondly, remote sensing images often contain significant noise and interference, affecting image 

resolution and recognition accuracy. SDAE can be applied to remove noise from remote sensing 

images, improving image clarity and recognition accuracy, thereby aiding researchers in better 

analyzing remote sensing data. Additionally, in image inpainting, SDAE can be used to remove 

damaged parts or noisy areas of images, restoring complete images. For example, in image inpainting 

tasks, SDAE can learn texture and structural information in images, thereby achieving restoration of 

damaged parts and noise removal. 

4. Comparative Analysis of Stacked Denoising Techniques and Classical Denoising 

Algorithms 

Stacked denoising techniques, particularly Stacked Denoising Autoencoders (SDAEs), as an 

emerging deep learning approach, exhibit distinct characteristics and advantages compared to 

classical denoising algorithms across multiple dimensions, as shown in Table 2.  

Table 2: Comparison Analysis of Stacked Denoising Techniques and Classical Denoising Algorithms 

Dimension SDAE Classical Algorithms 

Feature 

Learning 

High-level features, handles complex 

noise 
Effective for specific noise types 

Denoising Effect Strong performance, preserves details May struggle with complex noise 

Computational 
High training costs, lower inference 

complexity 

Generally efficient, but can be 

complex for large data 

Application 
High-quality images/videos, fine 

detail preservation 

Limited resources, real-time 

requirements 

Limitations 
Dependence on training data, high 

costs 

Insufficient for complex noise, detail 

preservation 

Improvements Efficient training, more data 
Combine with deep learning, explore 

new algorithms 

 

Firstly, SDAEs, through multi-layer nonlinear transformations, are capable of learning high-level 

feature representations of image data, thereby demonstrating robust performance in the denoising 

process. They can effectively remove common noise types such as Gaussian noise and salt-and-

pepper noise, and to some extent, handle more complex, nonlinear noise patterns. In contrast, classical 

denoising algorithms like Non-Local Means (NLM) and Block-Matching and 3D Filtering (BM3D), 

while excelling in dealing with specific types of noise, may fall short when confronted with complex 

noise or in preserving image details. In terms of evaluation metrics, Peak Signal-to-Noise Ratio 

(PSNR) and Mean Squared Error (MSE) are two crucial indicators for assessing denoising 

effectiveness. SDAEs typically achieve superior performance on these metrics, particularly at high 

noise levels, where their advantages are more pronounced. SDAEs better preserve edge and texture 

information in images, rendering the denoised images more natural and clear. 

Secondly, the training process of SDAEs is relatively complex, requiring substantial data and 

computational resources. Once the model is trained, the computational complexity of its inference 

process (i.e., the denoising process) is relatively low, but still higher than some classical denoising 

algorithms. Classical denoising algorithms, such as NLM and BM3D, although intuitively designed, 

exhibit non-negligible computational complexity when processing large-scale image or video data, 

especially in scenarios requiring real-time processing. Regarding computational efficiency and 

feasibility in practical applications, the preprocessing and training phases of SDAEs may require 

extended periods, limiting their use in certain time-sensitive applications. However, with 
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advancements in hardware technology and optimizations in deep learning frameworks, the 

computational efficiency of SDAEs is continually improving. In contrast, classical denoising 

algorithms, due to their algorithmic simplicity, generally possess higher computational efficiency and 

better real-time performance. 

Thirdly, the advantage of SDAEs in image denoising lies in their powerful feature learning 

capabilities and ability to handle complex noise patterns. This makes them excel in processing high-

quality images, videos, or scenarios requiring fine detail preservation. However, the limitations of 

SDAEs include their high training costs and strong dependence on training data. If training data is 

insufficient or the noise type does not match the training data, the denoising effectiveness of SDAEs 

may be compromised. Classical denoising algorithms are more suitable for scenarios with limited 

computational resources or high real-time requirements. They typically exhibit lower algorithmic 

complexity and higher computational efficiency, meeting practical application needs without 

sacrificing too much denoising performance. However, classical denoising algorithms may perform 

poorly in handling complex noise or scenarios requiring fine detail preservation. 

Fourthly, the primary limitations of SDAEs are their training costs and dependence on training 

data. To reduce training costs, more efficient training algorithms or methods such as transfer learning 

can be considered. Simultaneously, increasing the diversity and quantity of training data can enhance 

SDAEs' adaptability to different noise types. The limitations of classical denoising algorithms lie in 

their deficiencies in handling complex noise and fine detail preservation. To improve this, combining 

classical denoising algorithms with deep learning methods, leveraging the feature learning 

capabilities of deep learning to enhance the denoising performance of classical algorithms, can be 

considered. Additionally, exploring new denoising algorithms and evaluation metrics can better 

accommodate the needs of different application scenarios. 

5. Conclusion 

This study delves into the innovative aspects and advantages of stacked denoising autoencoders 

(SDAEs), conducting a comprehensive comparative analysis with classical denoising algorithms. By 

learning high-level features of image data through multi-layer nonlinear transformations, SDAEs 

demonstrate significant advantages in handling complex noise and preserving image details. Their 

innovation lies in the ability to adaptively learn the intrinsic structure of image data, thereby more 

effectively removing noise while maintaining the original features of the image. When compared to 

classical denoising algorithms such as Non-Local Means (NLM) and Block-Matching and 3D 

Filtering (BM3D), SDAEs typically achieve better performance in evaluation metrics such as Peak 

Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE), especially when dealing with images 

containing high noise levels or complex noise patterns. However, SDAEs also face limitations such 

as high training costs and strong dependence on training data. In contrast, classical denoising 

algorithms offer advantages in computational efficiency and real-time performance. 

This study makes substantial contributions to the field of image denoising. Firstly, by comparing 

and analyzing SDAEs with classical denoising algorithms, it reveals the advantages of SDAEs in 

denoising performance and their applicable scenarios, providing a new technological option for image 

denoising. Secondly, this study explores the limitations and directions for improvement of SDAEs, 

offering valuable references for subsequent research. Lastly, through a comprehensive evaluation of 

the performance of different denoising methods, this study provides a scientific basis for algorithm 

selection and optimization in the field of image denoising. 
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