

Comparative Analysis of Agile Development and Traditional
Development

Guojin Tan1,a,*

1Harbin University of Science and Technology, Harbin, 150080, China

a. java.qgj@gmail.com

*corresponding author

Abstract: As the requirements of engineering projects become more and more stringent,

traditional development methods have gradually been unable to meet the requirements of

many engineering projects, so agile development has emerged. However, although agile

development is very flexible in responding to requirements, it ignores important documents

and lacks overall planning., resulting in difficulty in maintenance and lack of stability during

development. Therefore, this article focuses on analyzing the advantages and disadvantages

of agile development and traditional development, and combines Scrum to tools, so that the

developed projects can better meet the needs, be more efficient, be more maintainable and

more stable. Both have their own applicable scenarios, and the two can complement each

other and hybrid development. This paper finds that agile development has obvious

advantages in responding quickly to changes and improving team collaboration, but

insufficient documentation and weak planning capabilities may affect later maintenance;

traditional development relies on stability and documentation. Advantages, but poor

adaptability to changes in requirements limits development efficiency. Based on this, this

paper proposes a hybrid development strategy that combines the advantages of the two. Using

agile flexibility and traditional standardization complementation can improve development

efficiency and stability. In addition, combining agile tools (such as Scrum, and Kanban) with

traditional requirements analysis and documentation processes can optimize the management

and standardization of the development process. In the end, it provided a new methodology

for the software development industry and proposed adaptive research directions for different

project sizes and industries.

Keywords: Scrum, Kanban, Agile development, traditional development

1. Introduction

With the rapid development of information technology, software development has become an

important means to promote social progress and enhance business competitiveness. However, the

diversity and complexity of software development projects make choosing the appropriate

development method the focus of the industry. Agile development is favored for its rapid response to

changes, while traditional development still occupies an important position due to its structured

management method and stability. Although agile development and traditional development have

their own advantages, they also have their own limitations. The insufficient documentation and

weakening of long-term planning in agile development often lead to maintenance difficulties later in

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

95

the project, while traditional development shows low flexibility in the face of frequent requirements

changes. This single approach makes it difficult for development teams to comprehensively respond

to the needs of complex projects. This paper aims to deeply analyze the advantages and disadvantages

of agile development and traditional development, and explore how to reasonably combine the

characteristics of the two, give full play to their advantages, and overcome their respective limitations,

so as to achieve comprehensive improvement in development efficiency and quality. Through this

research, it can not only provide guidance for development teams to select and implement

development methods in complex projects, but also provide new ideas and practical frameworks for

the improvement of software engineering methodologies, further promoting the continuous progress

of the software development industry. This paper first analyzes the characteristics, advantages and

disadvantages of agile development and traditional development, then discusses the feasibility and

strategies of combining the two, and finally puts forward specific suggestions for optimizing the

development process and summarizes the research significance.

2. Overview of Agile Development

2.1. Definition and Origin of Agile Development

Agile development is a people-centered, iterative and step-by-step software development approach

that emphasizes flexibility, collaboration and rapid response to change, and is designed to meet

customer needs by frequently delivering working software. The core values of agile development

include individuals and interactions over processes and tools, available software over complete

documents, customer collaboration over contract negotiation, and responsiveness to change over

compliance. The background of agile development can be traced back to the 1990s, when the software

development industry faced a "software crisis", which was manifested by problems such as project

overbudget, overtime, low quality, difficulty in maintenance, and failure to meet customer needs [1].

Although the traditional waterfall model has a clear structure, its linear development model is difficult

to cope with rapidly changing needs, resulting in high project failure rates and low customer

satisfaction [2]. In order to deal with these problems, the field of software development has begun to

explore new methodologies. Lightweight methods such as Extreme Programming (XP), Scrum, and

Lean Development (Lean) have gradually emerged, which emphasize iterative development,

customer collaboration, and rapid response to changes [3]. In February 2001, 17 software

development experts gathered at the Snowbird Ski Resort in Utah, USA, and jointly signed the "Agile

Manifesto", formally proposing the concept of agile development [4].

2.2. Core Principles of Agile Development

Agile development follows 12 principles. (1) Early and continuous delivery of valuable software,

obtaining timely feedback from customers through frequent interactions with available software, and

improving customer satisfaction [5]. (2) Welcoming requirements changes, agile development

reduces the cost and risk of requirements changes through flexible iterative processes and simplified

change management [6]. (3) Frequent delivery, frequent delivery of working software, delivery cycles

ranging from a few weeks to a few months, the shorter the better. Through a delivery strategy of small

steps and fast runs, agile development reduces the risk of large-scale integration and increases the

frequency of customer feedback [7]. (4) Daily collaboration between business personnel and

developers emphasizes communication and close cooperation between cross-functional teams [8]. (5)

Build an incentive mechanism with people at the core. Encourage team members to innovate

independently by creating an environment of trust and respect [9]. (6) Face-to-face communication

encourages direct face-to-face communication between teams to improve information

communication efficiency [10]. (7) Available software is the primary measure of progress. Project

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

96

progress is measured through actual delivered software functions rather than written documentation

[11]. (8) Sustainable development encourages teams to work at a sustainable pace and avoid quality

problems caused by excessive overtime [12]. (9) Continue to focus on technical excellence and good

design to maintain code quality and maintainability through continuous refactoring and technological

innovation [13]. (10) Concise-Minimize unnecessary work, pursue simple design and avoid

unnecessary complexity [14]. (11) Self-organizing teams empower teams to make independent

decisions and improve innovation capabilities and sense of responsibility [15]. (12) Regular reflection

and adjustment Conduct regular team reviews to continuously optimize working methods and

processes [16].

2.3. Key Tools for Agile Development

Scrum and Kanban are two popular tools in agile development. With appropriate adjustments, they

can effectively make up for the shortcomings of traditional development while retaining the

advantages of rigour and maintainability in traditional development. Scrum Agile Development is an

agile development framework. It is an incremental, iterative development process that is visible,

integrable, and runnable. Different from the traditional waterfall development model, it prefers to

perform short and fast version iterations of local modules of a complex system to quickly respond to

expected market demand verification. Scrum agile development generally has four inputs/outputs: (1)

Analyze, investigate and transform users’ needs, and issue product BACKLOG; (2) Product

BACKLOG, Sprint planning meeting, Sprint BACKLOG: Split product BACKLOG into Sprint

BACKLOG can be refined in this Sprint and managed according to development priorities, updating

Sprint BACKLOG status at any time; (3) Sprint BACKLOG, iterative development cycle, deliverable

iteration version: Start development work according to the Sprint BACKLOG and update the work

task panel to ensure that the overall development progress does not deviate significantly from the

preset Sprint burn-down chart. (4) Accept the release version, review meeting, cycle the data report:

PM accepts the iterative version of the development delivery based on the product BACKLOG, and

releases the iterative version of the product. Collect feedback on Sprint issues, identify root causes,

discuss solutions, and improve the Sprint process. Kanban is a visual project management method

that originated in Toyota's production system and aims to achieve continuous improvement by

limiting the amount of work-in-process (WIP), optimizing work processes, and improving team

collaboration efficiency. Kanban tracks the progress of tasks by displaying task status and updating

them in real time, such as listing to-do, in-progress, and completed events. WIP limit is one of

Kanban's core concepts. It prevents task backlog by limiting the upper limit of the number of tasks

processed simultaneously, improves development efficiency, and ensures smooth development. In

addition, managing flow optimizes the development process by measuring cycle time and throughput,

and sets clear working standards to improve team collaboration efficiency and make the process clear.

Optimize the process through daily standing meetings and regular reviews to achieve feedback loops,

and adopt incremental optimization strategies to achieve evolutionary change rather than large-scale

change.

3. Overview of Traditional Development

3.1. Definition and Basic Process of Traditional Development

Traditional development usually refers to the adoption of linear development methods such as the

waterfall model, emphasizing stage division and document driving. The core is to complete the steps

of requirements analysis, design, coding, testing and maintenance in order, and enter the next stage

after each stage is over. Traditional development generally has a clear process: (1) Requirements

analysis: To clarify system functions and user needs, a specific document is usually written to

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

97

describe user needs to provide clear plans for subsequent design; (2) System design: Formulate the

system architecture and module design, write documents, and design the structural database interfaces

required by the system, etc.; (3) Coding implementation: Convert the design into executable code and

conduct unit testing to ensure that the code meets the design requirements; (4) Testing: Verify the

functions and performance of the system, troubleshoot and fix problems; (5) Deployment: deliver the

system to users for use; (6) Maintenance: Ensure stable operation of the system, fix vulnerabilities,

and update the system in a timely manner as required.

3.2. Typical Models of Traditional Development

Typical models for traditional development include the waterfall model, the V model, the incremental

model, the spiral model, and the iterative model. The basic process described above is a reflection of

the original waterfall model, while the V model is an improvement of the waterfall model. It

corresponds to the development phase and the testing phase one by one to ensure quality control. The

incremental model splits software development into multiple small increments. Each increment is a

deliverable software version, and new functions are added for each delivery. Through repeated

iteration, a complete system is finally formed. The spiral model combines the structured process of

the waterfall model with the iterative idea of the incremental model, and emphasizes risk management.

By evaluating technology and managing risks, risks are further reduced. The iterative model

emphasizes that software development is an iterative process, with each iteration delivering a partially

available software and continuously optimizing it.

4. Comparison and Combination Strategies between Agile Development and Traditional

Development

4.1. Advantages, Disadvantages and Differences between Agile Development and Traditional

Development

As the name suggests, agile development has the advantage of high flexibility, can quickly respond

to changes in requirements, and is highly adaptable. User needs can be adjusted in a timely manner,

and products can be delivered quickly through short iterations. During the entire development process,

user participation is high. Through frequent delivery, user needs are responded to in a timely manner

to ensure that the development results are more relevant to user needs. It also has the advantage of

controllable risks. Since each delivery has a product, the project progress can be continuously

monitored, thereby reducing the risk of project failure. Through rapid feedback response and close

integration of development and testing, problems can be discovered and solved at an early stage.

Traditional development has a fixed process. Because it focuses on planning and documentation, it

emphasizes detailed requirements analysis, architecture design and planning before development, so

that the entire development process has a clear direction, complete documents, and facilitates

subsequent maintenance and handover.

Traditional development is highly normative. Because of its standardized development process, it

is very suitable when the team wants to complete a large project or a very high-quality scenario.

Traditional development is predictable. Through detailed preliminary planning and milestones, the

project's time and cost are highly controllable and suitable for a stable demand environment. Most of

its development is concentrated in the early stage, which is conducive to solving key problems at one

time. Through analyzing and comparing them, we found that agile development often lacks

documentation. Due to the emphasis on "working software is better than detailed documentation",

necessary design and technical documentation may be lacking in the later stage of development. For

long-term maintenance or handover projects, insufficient documentation can become an obstacle.

Second, its planning is not as detailed as traditional development.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

98

Agile development is characterized by "adjusting while developing", which may lead to

insufficient overall planning and architectural design. You may also focus too much on short-term

goals and ignore long-term development. Agile development is highly dependent on the team. Due

to the high requirements on the technical and collaborative capabilities of team members, any weak

link in the team will significantly affect efficiency and produce a plank effect. It has a low utilization

rate of resources. Some members in the project may be idle due to uneven allocation of tasks in a

certain iteration, and it is difficult to achieve long-term balance in resource allocation. The

disadvantages of traditional development are also obvious. Its adaptability is very poor. Once needs

change, detailed planning in the early stage may require large-scale adjustments, and the modification

cost is high. The development cycle is long, and the real needs of users may have changed by the time

development is completed. Its delivery time will be long, and users will have to wait for a long time

to see the results, which will not only make user engagement low, but may also lead to user needs

being misunderstood or expectations being met. Because the testing phase is often concentrated in

the later stage, its testing lags behind, which may make it difficult to adjust when problems are

discovered. Due to its obvious phased nature, some developers will be idle in the non-development

phase, resulting in insufficient utilization of their resources.

4.2. Combine the Advantages of Agile Development and Traditional Development

By comparing their different advantages and disadvantages, we found that their different advantages

can make up for each other's shortcomings to a certain extent. For example, traditional development

can provide detailed documentation for agile development, while agile development can provide

flexible delivery and rapid iteration for traditional development. Therefore, we can find strategies to

combine their advantages and achieve complementarity.

Strategy 1: Switch development models based on phased tasks. (1) During the project start-up

stage (traditional development model).

Detailed requirements analysis, architectural design and documentation. Taking advantage of

traditional development, clear goal setting and technical difficulties will be completed in the early

stage of the project. The output results include requirements documents, system architecture design

documents and technical specifications. (2) Mid-term development phase (agile development model):

Use agile development for rapid iteration and functional implementation. Communicate frequently

with customers, gradually verify requirements and adjust implementation strategies. The

development process iteratively delivers available sub-functional modules to ensure flexibility in

project advancement. (3) Project closing stage (traditional development model): Return to the

traditional development process and conduct system integration and comprehensive testing. Prepare

necessary operation and maintenance documents and technical manuals to provide support for post-

maintenance.

In this way, we can use the standardization of traditional development to avoid the problem of

unclear requirements in the early stage, use the flexibility of agile development to cope with changes

in the medium stage, and ensure stable delivery through traditional development in the later stage.

Strategy 2: Hybrid development methods

Goal: Use both agile development and traditional development in the same project, and adopt

different strategies for different modules.

(1) Core module: Use traditional development models to carry out detailed planning and

documentation to ensure high quality and high stability.

(2) Non-core modules: Use an agile development model to quickly deliver the functions required

by users.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

99

(3) Collaboration mechanism: Use tools (such as Jira or Confluence) to seamlessly connect the

work of agile teams with traditional teams, ensuring the flow of information between the two

development methods.

Strategy 3: (1) Introduce a document management method that combines agile and traditional

methods to add lightweight documents to agile development: Add simple design instructions to each

user story. Use templated documentation to record technical decisions and design ideas. Simplify

some documents in traditional development: For functional modules with low stability requirements,

use the lightweight document method of agile development. Use tools such as Confluence to

uniformly manage documents:

Store dynamic documents for agile development and formal documents for traditional

development in a unified knowledge base.

Strategy 4: Introducing Scrum Kanban.

Scrum can flexibly adjust requirements in the middle and late stages of a project, while ensuring

that iterative deliverables meet customer needs. By appropriately introducing traditional development

methods, Scrum can solve its problems of insufficient documentation and insufficient long-term

planning.

Application strategy: (1) Detailed documentation combined with traditional development: Before

the start of Sprint, requirements documents (PRD) and technical design documents common in

traditional development can serve as a reference basis. After each iteration is completed, supplement

brief documents to record the functional and technical details of the implementation to make up for

the lack of documentation in agile development. (2) Appropriately introduce a milestone checking

mechanism for traditional development: Introduce a phased review of traditional development after

several Sprints to assess whether the overall progress of the project is in line with long-term goals.

(3) Plan for stable core project functions: Design key parts of the project (such as core modules or

high-risk parts) in advance in the traditional development phase, and then complete the low-risk parts

through Scrum iteration. (4) Division of labor between agile and traditional personnel: Agile teams

focus on functional realization, while traditional teams focus on architectural design and technical

difficulties.

Kanban emphasizes real-time management of tasks, which is suitable for task flow management

and delivery control in traditional development, and can make up for the problem of opaque task

schedules in traditional development.

Application strategy: Use Kanban in the requirements analysis stage of traditional development:

decompose requirements analysis tasks into detailed work items and visualize progress through

Kanban. Ensure that requirements analysis is completed step by step according to priority to avoid

waste of resources caused by large-scale requirements analysis. (1) Integrate traditional quality

control processes in agile development: Add quality inspection links (such as code review, and

integration testing) to Kanban as a necessary step of the task. Embed traditional development testing

processes into Kanban's workflow to ensure delivery quality. (2) Sprint combined with Scrum: Use

Kanban to manage task status in detail during the iteration cycle of Scrum to avoid too extensive task

allocation in Scrum. (3) Cross-team collaboration: Use Kanban to manage collaboration between

development and test teams to ensure clear and transparent task switching.

5. Conclusion

Through an analysis of the advantages and disadvantages of agile development and traditional

development, we can find that agile development has significant advantages in responding quickly to

changes, improving user satisfaction, and enhancing team collaboration. However, its shortcomings,

such as insufficient documentation and weak long-term planning capabilities, may have a negative

impact on the project. Maintenance has a negative impact. Traditional development has stability and

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

100

comprehensive documentation as its core advantages, but its low adaptability to changes in

requirements and long feedback cycles limit development efficiency. On this basis, this paper

proposes a development strategy that combines the advantages of the two, adopting agile flexibility

and traditional standardization complementation, which can effectively improve development

efficiency and stability.

The combination of agile development and traditional development is not a simple technical choice,

but a management innovation that conforms to the development trend of modern software engineering.

By optimizing the combined application of the two, the development team's adaptability in complex

environments can be significantly improved to meet changing customer needs. At the same time, this

research provides a new methodological reference for the software development industry and helps

promote the further improvement of industry standards and practices.

In practice, flexible management of the development process can be achieved by introducing agile

tools such as Scrum and Kanban, and at the same time, the standardization and traceability of

development can be strengthened with the help of traditional development requirements analysis and

documented processes. Specifically, the small-batch iteration method suitable for agile development

can run through the entire process of project development, while the comprehensive requirements

analysis and phased quality assessment of traditional development should be given full attention

during the project launch and delivery stages.

Although this paper makes a preliminary discussion on the combination of agile development and

traditional development, there are still many issues worthy of further study. For example, how to

design suitable hybrid development models for projects of different sizes and industries? How to

further improve the efficiency of combining the two methods through automated tools? Solving these

problems will provide more possibilities for innovation and optimization of software development

methods.

References

[1] Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham, W., Fowler, M., ... & Thomas, D. (2001).

Manifesto for Agile Software Development. Retrieved from http://agilemanifesto.org/

[2] Boehm B. W. (1991). Software Engineering Economics. Prentice-Hall, pp.1-150.

[3] Royce W. W. (1970). Managing the development of large software systems. Proceedings of IEEE WESCON, pp.1-

9.

[4] Schwaber K., & Beedle M. (2002). Agile Software Development with Scrum. Prentice-Hall, pp.1-328.
[5] Cockburn A., Highsmith J. (2001). Agile software development: The people factor. Computer, 34(11), 131-133.

[6] Fowler M., Highsmith J. (2001). The agile manifesto. Software Development, 9(8), 28-35.

[7] Schwaber K., Beedle, M. (2002). Agile Software Development with Scrum. Prentice Hall, pp.1-158.

[8] Cockburn A. (2002). Agile Software Development. Addison-Wesley, pp.1-304.

[9] Dingsøyr T., Nerur S., Balijepally V., & Moe N. B. (2012). A decade of agile methodologies: Towards explaining

agile software development. Journal of Systems and Software, 85(6), 1213-1221.

[10] Beck K., Beedle, M., van Bennekum A., Cockburn A., Cunningham, W., Fowler, M., ... & Thomas, D. (2001).

Manifesto for Agile Software Development. Retrieved from http://agilemanifesto.org.

[11] Schwaber K. (2004). Agile Project Management with Scrum. Microsoft Press, pp.1-192.

[12] Poppendieck M., Poppendieck T. (2003). Lean Software Development: An Agile Toolkit. Addison-Wesley, pp.1-192.

[13] Beck K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley, pp.1-189.
[14] Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, pp.1-464.

[15] Takeuchi H., & Nonaka I. (1986). The new new product development game. Harvard Business Review, 64(1), 137-

146.

[16] Schwaber K., & Sutherland J. (2011). The Scrum Guide. Scrum Alliance, pp.1-17.

Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/119/2025.21671

101

