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Abstract: This paper proposes a traffic flow prediction model based on the fusion of time-

domain convolutional network (TCN) and long-short-term memory network (LSTM), and 

verifies its effectiveness through multi-dimensional experiments. To address the complexity 

of urban traffic flow prediction, the study constructs a TCN-LSTM hybrid model to fuse 

temporal feature extraction and long and short-term dependency capturing capabilities, and 

performs prediction validation on three types of traffic flow datasets, namely, cars, bicycles 

and trucks, respectively. The experimental results show that: in car traffic prediction, the 

training loss value of the model decreases significantly from the initial 0.8 to less than 0.1, 

and the R² of the training set and the test set reaches 0.73 and 0.75, respectively, which reflects 

good convergence and generalisation ability; bicycle traffic prediction shows that the R² of 

the training set reaches as high as 0.84 but the R² of the test set decreases to 0.31, which 

shows that there is a certain degree of overfitting phenomenon; truck Truck traffic prediction 

achieves a balanced performance of R² 0.73 for the training set and R² 0.50 for the test set, 

which verifies the model's ability to capture heavy vehicle traffic patterns robustly. By 

comparing the performance differences between TCN, LSTM and their hybrid models 

through ablation experiments, it is found that TCN-LSTM is superior in key indicators: the 

mean absolute error (MAE) is 0.11 lower than that of the pure TCN model, the mean squared 

error (MSE) is in between that of TCN and LSTM, and the relative prediction deviation (RPD) 

reaches the highest value of the three at 2.15, which is a good proof that the hybrid model 

combines both multi-scale capturing ability of time-series features and the advantage of 

accurate modelling of nonlinear relationships. 

Keywords: Time-domain convolutional networks, Long and short-term memory networks, 

Traffic flow prediction, 

1. Introduction 

With the acceleration of global urbanisation, traffic congestion has become a core problem of modern 

urban governance. According to statistics, the economic loss caused by traffic congestion in major 

cities around the world is up to billions of dollars, while the accompanying tailpipe emissions 

exacerbate environmental pollution and energy consumption [1]. In this context, Intelligent Transport 
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Systems (ITS), as a key technology to alleviate traffic pressure, relies on the accurate prediction of 

traffic flow as its core function. Traffic flow prediction provides decision support for traffic signal 

control, route planning, and accident early warning by analysing historical and real-time data and 

inferring the vehicle traffic status of a specific time and road section in the future. However, traffic 

flow has a high degree of nonlinearity and spatial and temporal correlation, and is affected by multiple 

factors such as weather, emergencies, holidays, etc. Traditional prediction methods are often difficult 

to capture complex data patterns, and there is an urgent need for more efficient and adaptive 

technological means [2]. 

Early traffic flow prediction was mainly based on statistical models and physical simulation. For 

example, the autoregressive integral sliding average model (ARIMA) captures the cyclical 

characteristics of traffic flow through time series analysis, and Kalman filtering is used to dynamically 

update the prediction results. In addition, simulation models based on traffic flow theory (e.g., 

VISSIM) generate forecast data by simulating vehicle micro-behaviour. However, these methods 

have significant drawbacks: statistical models rely on linear assumptions and cannot deal with 

nonlinear interactions in the traffic system; simulation models need to preset complex parameters and 

are computationally expensive, making it difficult to respond to the demands of large-scale road 

networks in real time. With the exponential growth of the amount of urban traffic data, the limitations 

of traditional methods become more and more prominent [3]. 

In recent years, deep learning has achieved breakthroughs in the field of traffic flow prediction 

through multi-layer neural network architectures. Convolutional neural networks (CNNs) are good at 

extracting spatial features of road network topology, e.g., transforming urban road networks into 

raster images to capture the traffic propagation patterns of adjacent road sections; recurrent neural 

networks [4] (RNNs) and their variants (e.g., LSTMs, GRUs) are capable of modelling long term 

dependencies in the temporal dimension, e.g., identifying sudden changes of the traffic pattern in the 

morning and evening peaks. To further incorporate spatio-temporal properties, researchers propose 

hybrid models such as CNN-LSTM [5] to capture spatio-temporal correlations simultaneously 

through joint training.  In this paper, we optimise the long and short-term memory network based on 

time-domain convolutional network for traffic flow prediction and verify the effectiveness of the 

model through experiments. 

2. Sources of data sets 

This experiment uses open source dataset, the source of the dataset is kaggle, the dataset records the 

traffic flow of the road traffic over a period of time, containing the date, the number of cars passing, 

the number of bikes passing and the number of trucks passing. We choose 387 of these data for the 

experiment. 

Table 1: Results of ablation experiments. 

Time Day of the week CarCount BikeCount TruckCount 

12:00:00 AM Tuesday 31 0 4 

12:15:00 AM Tuesday 49 0 3 

12:30:00 AM Tuesday 46 0 6 

12:45:00 AM Tuesday 51 0 5 

1:00:00 AM Tuesday 57 6 16 

1:15:00 AM Tuesday 44 0 4 

1:30:00 AM Tuesday 37 0 4 

1:45:00 AM Tuesday 42 4 5 

2:00:00 AM Tuesday 51 0 7 
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2:15:00 AM Tuesday 34 0 7 

2:30:00 AM Tuesday 45 0 1 

2:45:00 AM Tuesday 45 0 3 

3:00:00 AM Tuesday 50 0 0 

 

The graphs of changes in traffic flow for cars, bicycles and trucks are output separately, the graphs 

of changes in traffic flow for cars are shown in Fig. 1, the graphs of changes in traffic flow for bicycles 

are shown in Fig. 2 and the graphs of changes in traffic flow for trucks are shown in Fig. 3. 

 

Figure 1: The graphs of changes in traffic flow for cars. 

 

Figure 2: The graphs of changes in traffic flow for bicycles. 

 

Figure 3: The graphs of changes in traffic flow for trucks. 

Table 1: (continued). 
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3. Method 

3.1. Time Domain Convolutional Networks 

Time domain convolutional network (TCN) is a deep learning model designed specifically for time 

series data, and its core idea is to improve the structure of traditional convolutional neural network 

(CNN) by improving the structure of CNN, so that it can effectively capture long-range dependencies 

in the time dimension, and at the same time, overcome the limitations of recurrent neural network 

(RNN)-like models in terms of parallel computation and training efficiency [6]. The time domain 

convolutional network. The model structure diagram of the TCN is shown in Fig. 4. 

 

Figure 4: The model structure diagram of the TCN. 

The core structure of TCN is based on causal convolution and dilation convolution. Causal 

convolution ensures that the model relies only on the input data of the current and past moments when 

predicting the output of the current time step, avoiding the leakage of future information, a feature 

that makes it naturally suitable for time series prediction tasks. Expansion convolution, on the other 

hand, can significantly expand the sensory field while keeping the number of parameters constant by 

introducing an ‘expansion factor’ to control the interval sampling of the convolution kernel. For 

example, the dilation factor grows exponentially as the number of network layers deepens, allowing 

the deeper network to capture earlier temporal features. This design allows TCNs to avoid the gradient 

vanishing problem of RNNs while being more efficient than traditional CNNs when dealing with 

long sequences [7]. 

To improve the depth and stability of the model, TCNs are usually combined with residual 

connectivity. Each residual block consists of multilayer dilated causal convolution and nonlinear 

activation functions, and passes the input directly to the output through jump connections. This 

structure not only mitigates the gradient vanishing problem, but also allows the network to learn the 

residual mapping between inputs and outputs to build deeper network structures. The stacking of 

residual blocks allows the model to extract features on different time scales layer by layer, ultimately 

fusing multiple levels of temporal information. 

3.2. Long Short-Term Memory Networks 

Long Short-Term Memory Network (LSTM) is a deep learning model designed to overcome the 

shortcomings of traditional Recurrent Neural Networks (RNNs), and is specifically designed to deal 

with long-term dependency problems in sequential data. In traditional RNNs, as the time step 

increases, it is difficult for the network to effectively deliver early information (i.e., there is a gradient 

disappearance or explosion), while LSTM achieves fine-grained control of the information by 

introducing a unique ‘memory unit’ and gating mechanism, which can both capture short-term 

features and maintain long-term memory. 
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The core design of LSTM is the ‘cell state’, which acts as a backbone through time and is 

responsible for the stable transmission of key information between different time steps. The stability 

of the cell state is regulated by three gating structures: the forgetting gate, the input gate and the output 

gate. These gates are not physical structures, but rather ‘switches’ modelled by neural network layers 

and activation functions that determine the retention or discard of information [8]. The structural 

schematic of the long and short-term memory network is shown in Figure 5. 

 

Figure 5: The structural schematic of the long and short-term memory network. 

The forgetting gate is responsible for filtering historical information. It will determine which old 

information in the cell state needs to be retained or forgotten based on the current input and the hidden 

state of the previous moment [9]. The input gate, on the other hand, is responsible for filtering new 

information, and it combines the current input and the hidden state to determine which new features 

need to be integrated into the cell state. This process is similar to the ‘selective updating’ of human 

memory, which ensures that memory cells are always relevant to the current task. The output gate 

ultimately determines the current moment's output, which generates an externally visible prediction 

or feature representation based on the updated cell state and hidden state [10]. 

3.3. Long and short-term memory network based on time domain convolutional network 

optimisation 

Time domain convolutional network (TCN) is an improved sequence modelling method based on 

convolutional neural network (CNN), which can effectively optimize the shortcomings of long short-

term memory network (LSTM) in long sequence modelling by introducing mechanisms such as 

causal convolution and dilation convolution. The combination of the two mainly improves the model's 

ability to model time-series data in terms of structural complementarity and computational efficiency. 

The shortcoming of LSTM is the order dependency due to its recursive structure: the computation 

of each time step must wait for the output of the previous moment, which limits the parallelism and 

may still face gradient decay in very long sequences. TCN circumvents this problem through causal 
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convolution - its convolution kernel only allows access to the historical information at the current 

moment and does not involve the future data. future data, which preserves temporal causality and 

directly expands the sensory field by stacking multiple layers of dilated convolutions. 

In addition, TCN's parameter sharing mechanism significantly reduces the number of parameters, 

alleviating the overfitting problem of LSTM due to the complex gating structure. 

The optimisation of TCN for LSTM is mainly reflected in two aspects:   

1. Parallel computation acceleration: the recursive computation of LSTM is naturally difficult to 

parallelise, while the convolutional operation of TCN can process the whole sequence at once, which 

significantly reduces the training time, especially in the GPU environment. 

2. Explicit long-range dependency capture: LSTM relies on cell states to convey long-term 

information, but ultra-long sequences may still lead to ‘overloading’ of memory cells. TCN 

exponentially expands the sense field through residual concatenation and dilation convolution, 

explicitly covering a history window of thousands of time steps. 

4. Experiments and Results 

This experiment is divided into three groups: car traffic prediction, bicycle traffic prediction and truck 

traffic prediction. The experimental results of car traffic prediction are output first. The change of 

loss during the training process is shown in Fig. 6, the predicted-actual value scatter plot of the 

training set is shown in Fig. 7, and the predicted-actual value scatter plot of the test set is shown in 

Fig. 8, and the prediction of the future traffic is made by using the trained model, as shown in Fig. 9. 

       

      Figure 6: The change of loss.         Figure 7: The predicted-actual value scatter plot.  

     

Figure 8: The predicted-actual value scatter plot.   Figure 9: The prediction of the future traffic.         
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From the car traffic prediction results, it can be seen that the loss gradually decreases from the 

initial 0.8 to below 0.1 and converges, the R2 of the training set is 0.73 and the R2 of the test set is 

0.75, the model achieves good prediction results in the training set, and also shows good prediction 

results in the test set as well. Next, the output results of the output bicycle traffic. The change of loss 

during the training process is shown in Fig. 10, the predicted-actual value scatter plot of the training 

set is shown in Fig. 11, and the predicted-actual value scatter plot of the test set is shown in Fig. 12, 

and the prediction of future traffic using the trained model is shown in Fig. 13. 

 

Figure 10: The change of loss.    Figure 11: The predicted-actual value scatter plot.  

 

Figure 12: The predicted-actual value scatter plot.   Figure 13: The prediction of the future traffic.   

From the results of bike traffic prediction, it is clear that the model also shows good prediction on 

bike traffic prediction with R2 of 0.84 for the training set and R2 of 0.31 for the test set, which shows 

good results on the training set and slightly worse performance on the test set. 

The final output is the result of the prediction of the truck traffic. The change in loss during training 

is shown in Fig. 14, the predicted-actual value scatter plot for the training set is shown in Fig. 15, and 

the predicted-actual value scatter plot for the test set is shown in Fig. 16, and the prediction of future 

traffic using the trained model is shown in Fig. 17. 
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        Figure 14: The change of loss.    Figure 15: The predicted-actual value scatter plot.  

 

Figure 16: The predicted-actual value scatter plot.  Figure 17: The prediction of the future traffic.  

From the results of the truck traffic prediction, it can be seen that the R2 of the training set is 0.73 

and the R2 of the test set is 0.50, which is a better prediction compared to the bicycle traffic and 

shows a good generalisation ability. 

In order to verify the practical effect of the model, we conducted two sets of ablation experiments, 

using only the time-domain convolutional network algorithm and the long-short-term memory 

network algorithm to predict traffic flow, respectively, and quantitatively evaluated using the 

indicators of MAE, MSE, R^2, and RPD, and the results are shown in Table 2. 

Table 2: Results of ablation experiments. 

Indicators MAE MSE R^2 RPD 

TCN 5.6019 47.7934 0.50341 1.4298 

LSTM 6.7935 74.8997 0.27171 1.1949 

TCN-LSTM 5.4901 51.0705 0.53528 1.5238 

 

From the results of the ablation experiments, it can be seen that the TCN-LSTM hybrid model is 

the best, with a reduction of 0.11 in MAE compared to TCN, and TCN-LSTM is located between 

TCN and LSTM in MSE, and also the highest among the three in RPD, which indicates that the TCN-

LSTM in this paper has the strongest predictive ability. 

Proceedings of  the 5th International  Conference on Materials  Chemistry and Environmental  Engineering 
DOI:  10.54254/2755-2721/144/2025.21676 

66 



 

5. Conclusion 

In this study, a hybrid model based on time-domain convolutional network (TCN) optimised long-

short-term memory network (TCN-LSTM) is proposed to address the complex temporal 

characteristics of traffic flow prediction, and its effectiveness is verified in the tasks of automobile, 

bicycle, and truck traffic flow prediction through multiple sets of comparative experiments. 

In the car traffic prediction task, the model demonstrates excellent convergence and generalisation 

ability. The loss function decreases steadily from the initial value of 0.8 to below 0.1 and tends to be 

stable during the training process, and the R² of the training set and the test set reaches 0.73 and 0.75, 

respectively, indicating that the model is not only able to fully learn the nonlinear features in the data, 

but also able to effectively overcome the overfitting problem. This result verifies the ability of TCN-

LSTM to model the continuity and periodicity of automobile flow, and the synergy between its deep 

feature extraction module (TCN) and the sequence dynamic memory module (LSTM) makes the 

model capable of capturing the short-term fluctuations of vehicle aggregation in the road network as 

well as correlating the long-period patterns such as morning and evening peaks. For bicycle flow 

prediction, the model achieves a high R² value of 0.84 on the training set, but the R² drops to 0.31 on 

the test set, reflecting the fact that bicycle flow may be more stochastic and environmentally sensitive 

(e.g., external disturbances such as sudden changes in the weather and bicycle-sharing scheduling), 

resulting in a widening of the difference between the training data distribution and the test scenario. 

Nevertheless, the high accuracy of the training set demonstrates the model's ability to characterise 

complex local patterns, while the fluctuation of the test performance suggests the need to enhance the 

model's robustness by introducing external variables in the future. In truck traffic prediction, the R² 

of the model's training and test sets are 0.73 and 0.50, respectively. 

The comparative analysis of TCN, LSTM and TCN-LSTM through ablation experiments further 

reveals the structural advantages of hybrid models in this study. The experimental data show that the 

prediction error (MAE) of TCN-LSTM is 0.11 lower than that of the single TCN model, and the 

reduction of the mean absolute error intuitively reflects the complementary gains of the gating 

mechanism and the convolutional features; its mean squared error (MSE) is in-between those of the 

TCN and the LSTM, which suggests that the hybrid model achieves a compromise optimisation in 

balancing the sensitivity of local outliers and the overall stability; and the relative prediction The 

relative prediction deviation (RPD) reaches the highest value of the three, which statistically confirms 

the high consistency between the TCN-LSTM prediction results and the distribution of true values. 

The significance of this study lies in the fact that through the deep coupling of TCN and LSTM, a 

traffic flow prediction framework that takes into account both local feature capture and global state 

evolution is constructed, which provides a new idea for solving the problem of multimodal traffic 

flow prediction in intelligent transport systems. 
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